Citation: WANG Xiao-han, SONG Qian-shi, ZENG Xiao-jun, WU Yong. Modeling study on the biomass char gasification kinetics under CO2 atmosphere: Ⅱ. Pre-exponential factor[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 529-536. shu

Modeling study on the biomass char gasification kinetics under CO2 atmosphere: Ⅱ. Pre-exponential factor

  • Corresponding author: WANG Xiao-han, wangxh@ms.giec.ac.cn
  • Received Date: 11 January 2017
    Revised Date: 14 March 2017

    Fund Project: the National Natural Science Foundation of China 51276184

Figures(5)

  • Based on the simple collision theory (SCT), the calculation method of biomass char gasification rate was developed and the combined parameters to characterize the pre-exponential factor were found. Furthermore, some experimental tests for six acid-washed biomass chars, such as the isothermal gasification and so on, were performed under CO2 atmosphere, using a thermo-gravimetric analyzer (TGA) over the temperature ranges of 800-1000 ℃, respectively. Through the comparison of experimental data and modeling results, it is found that a good agreement is made and the developed model equations can provide an effective guidance to clarify the general gasification law of biomass chars.
  • 加载中
    1. [1]

      KIRKELS A F, VERBONG G P J. Biomass gasification: Still promising? A 30-year global overview[J]. Renewable Sustainable Energy Rev, 2011,15(1):471-481. doi: 10.1016/j.rser.2010.09.046

    2. [2]

      KAJITANI S, SUZUKI N, ASHIZAWA M, HARA S. CO2 gasification rate analysis of coal char in entrained flow coal gasifier[J]. Fuel, 2006,85(2):163-169. doi: 10.1016/j.fuel.2005.07.024

    3. [3]

      KIRUBAKARAN V, SIVARAMAKRISHNAN V, NALINI R, SEKAR T, PREMALATHA M, SUBRAMANIAN P. A review on gasification of biomass[J]. Renewable Sustainable Energy Rev, 2009,13(1):179-186. doi: 10.1016/j.rser.2007.07.001

    4. [4]

      FERMOSO J, ARIAS B, PEVIDA C, PLAZA M G, RUBIERA F, PIS J J. Kinetic models comparison for steam gasification of different nature fuel chars[J]. J Thermal Anal Calorimetry, 2008,91(3):779-786. doi: 10.1007/s10973-007-8623-5

    5. [5]

      SEO D K, LEE S K, KANG M W, HWANG J, YU T U. Gasification reactivity of biomass chars with CO2[J]. Biomass Bioenergy, 2010,34(12):1946-1953. doi: 10.1016/j.biombioe.2010.08.008

    6. [6]

      OLLERO P, SERRERA A, ARJONA R, ALCANTARILLA S. The CO2 gasifcation kinetics of olive residue[J]. Biomass Bioenergy, 2003,24(2):151-161. doi: 10.1016/S0961-9534(02)00091-0

    7. [7]

      FOUGA G G, DE MICCO G, BOH A E. Kinetic study of argentinean asphaltite gasification using carbon dioxide as gasifying agent[J]. Fuel, 2011,90(2):674-680. doi: 10.1016/j.fuel.2010.09.037

    8. [8]

      COZZANI V. Reactivity in oxygen and carbon dioxide of char formed in the pyrolysis of refuse-derived fuel[J]. Ind Eng Chem Res, 2000,39(4):864-872. doi: 10.1021/ie990534c

    9. [9]

      MI Tie, CHEN Han-ping, TANG Ru-jiang, WU Chuang-zhi, MA Long-long, SHAO Jing-ai, WANG Xian-hua, HE Qiao, LIU De-chang, ZHENG Chu-guang. Reactivity study on biomass chars in CO2 atmosphere[J]. Acta Energ Sol Sin, 2005,26(6):766-771.  

    10. [10]

      HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi, WANG Cong-wei, XIE Jian-jun, ZHOU Zhao-qiu, MA Long-long, LI Hai-bin. Study on CO2 gasification reactivity of rice straw chars[J]. J Fuel Chem Technol, 2009,37(3):289-295.  

    11. [11]

      ZHAO Bing, ZHOU Zhi-jie, DING Lu, YU Guang-suo. Changes in the microstructure and gasification reactivity of petroleum coke and coal samples after rapid pyrolysis[J]. J Fuel Chem Technol, 2013,41(1):40-45.  

    12. [12]

      XIAO Rui-rui, CHEN Xue-li, WANG Fu-chen, YU Guang-suo. Research on kinetics characteristics of gasification biomass semi-char with CO2[J]. Acta Energ Sol Sin, 2012,33(2):236-242.

    13. [13]

      LIU Wen-zhao, YU Jian, ZHANG Ju-wei, GAO Shi-qiu, XU Guang-wen. Kinetic study of reaction of porous solids[J]. Sci Sin Chim, 2012,42(8):1210-1216.  

    14. [14]

      FU W B, ZHANG B L, ZHENG S M. A relationship between the kinetic parameters of char combustion and the coal's properties[J]. Combust Flame, 1997,109(4):587-598. doi: 10.1016/S0010-2180(97)89632-0

    15. [15]

      WANG X H, ZENG X J, YANG H L, ZHAO D Q. General modeling and numerical simulation of the burning characteristics of porous chars[J]. Combust Flame, 2012,159(7):2457-2465. doi: 10.1016/j.combustflame.2012.02.025

    16. [16]

      DONG Cun-zhen, WANG Xiao-han, ZENG Xiao-jun, SHAO Zhen-hua. Experimental study on the gasification kinetic parameters of biomass chars under CO2 atmosphere: Ⅰ. Activation energy[J]. J Fuel Chem Technol, 2014,42(3):75-81.  

    17. [17]

      SHAO Zhen-hua, WANG Xiao-han, ZENG Xiao-jun, WU Yong. Gasification Activation Energy of Biomass Chars Based on Simple Collision Theory[J]. Chin J Process Eng, 2015,15(4):599-606. doi: 10.12034/j.issn.1009-606X.215212

    18. [18]

      FU Pei-fang, FANG Qin-yan, YAO Bin, ZHOU Huai-chun. Study on the reaction kinetics model of pulverized coal combustion based on SCT-part Ⅰ: Theory and TGA[J]. J Eng Thermophy, 2005,26(2):153-156.  

    19. [19]

      FU Peng, HU Song, XIANG Jun, SUN Lu-shi, ZHANG An-chao, YANG Tao, JIANG Long. Evolution of pore structure of biomass particles during pyrolysis[J]. CIESC J, 2009,60(7):1793-1799.  

    20. [20]

      YIP K, TIAN F J, HAYASHI J, WU H. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy Fuels, 2009,24(1):173-181.  

    21. [21]

      ZHANG Y, ASHIZAWA M, KAJITANI S, MIURA K. Proposal of a semi-empirical kinetic model to reconcile with gasification reactivity profiles of biomass chars[J]. Fuel, 2008,87(4 /5):475-481.  

    22. [22]

      LIN Xiong-chao, WANG Cai-hong, TIAN Bin, ZHANG Shu, ZHOU Jian-lin, WANG Yong-gang. Effects of de-ashing on the micro-structural transformation and CO2 reactivity of two Chinese bituminous coal chars[J]. J China Univ Min Technol, 2013,42(6):1040-1046.  

    23. [23]

      MIN F F, ZHANG M X, Zhang Y, CAO Y, PAN W P. An experimental investigation into the gasification reactivity and structure of agricultural waste chars[J]. J Analy Appl Pyrolysis, 2011,92(1):250-257. doi: 10.1016/j.jaap.2011.06.005

  • 加载中
    1. [1]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    4. [4]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    5. [5]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    6. [6]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    9. [9]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    14. [14]

      Hui BianXinyi YuanNan ZhangZhuo XuJuhong LianRuibin JiangJunqing YanDeng LiShengzhong (Frank) Liu . Correlating vacancy-defect density with CO2 activation for promoted CO2 methanation over CsPbBr3 photocatalyst. Chinese Chemical Letters, 2025, 36(7): 111034-. doi: 10.1016/j.cclet.2025.111034

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    17. [17]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    18. [18]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

Metrics
  • PDF Downloads(21)
  • Abstract views(1099)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return