Citation: WEI Guo-qiang, HE Fang, ZHAO Zeng-li, ZHAO Wei-na, HUANG Zhen, ZHENG An-qing, ZHAO Kun, FENG Yi-peng, LI Hai-bin. Chemical looping gasification of biomass based on the oxygen carrier derived from the layered double hydroxide (LDH) precursor[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 349-356. shu

Chemical looping gasification of biomass based on the oxygen carrier derived from the layered double hydroxide (LDH) precursor

  • Corresponding author: HE Fang, hefang@ms.giec.ac.cn
  • Received Date: 23 August 2015
    Revised Date: 30 November 2015

    Fund Project: National Natural Science Foundation of China 51406214and the Science and Technology Planning Project of Guangdong Province 2015A020215023

Figures(5)

  • Layered double hydroxide (LDH) precursors with different metal elements were prepared by co-precipitation method at constant pH value; highly dispersed Cu/Al/Zn, Cu/Al/Ni and Cu/Al/Ni/Zn mixed metal oxygen carriers were obtained by calculation of the corresponding precursors. These oxygen carriers were characterized by XRD, XRF, H2-TPR, SEM and nitrogen adsorption and their activity in the chemical looping gasification (CLG) of biomass was investigated in a fixed bed reactor. The results indicated that typical hydrotalcite structure appears in the three precursors with stable layer board. The interlayer spacing of Cu/Al/Zn precursor is 0.2642nm, larger than that of the Cu/Al/Ni precursor. The oxygen carriers derived from the corresponding precursors display similar elements contents as the preparation reagents. Due to the synergy among various metals, the Cu/Al/Ni/Zn oxygen carrier shows the highest reaction activity and anti-sintering ability. The addition of Ni and Zn has a positive effect on the activity of CuO and reduce its reduction temperature; Zn shows a better synergistic effect than Ni with Cu. The carbon conversion reaches 82.03% for the CLG of biomass with Cu/Al/Ni/Zn as oxygen carrier; the surface area of Cu/Al/Ni/Zn remanis 5.995m2/g after the CLG reaction, suggesting that it could be an ideal candidate for the CLG of biomass.
  • 加载中
    1. [1]

      RICHTER H, KNOCHE K, RICHTER H, KNOCHE K. Reversibility of combustion processes[J]. ACS Symp Ser, 1983,235(3):71-86.  

    2. [2]

      UDOMSIRICHAKORN J, BASU P, ABDUL SALAM P, ACHARYA B. CaO-based chemical looping gasification of biomass for hydrogen-enriched gas production with in situ CO2 capture and tar reduction[J]. Fuel Process Technol, 2014,127:7-12. doi: 10.1016/j.fuproc.2014.06.007

    3. [3]

      HUANG Z, HE F, FENG Y, ZHAO K, ZHENG A, CHANG S, LI H. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier[J]. Bioresour Technol, 2013,140:138-145. doi: 10.1016/j.biortech.2013.04.055

    4. [4]

      TIAN H, FISHER J C. Isotopic steam investigations of hematite (Fe2O3) for chemical looping combustion of methane[J]. Catal Commun, 2015,67:83-86. doi: 10.1016/j.catcom.2015.04.015

    5. [5]

      MEI D, ABAD A, ZHAO H, ADÁNEZ J. Characterization of a sol-gel derived CuO/CuAl2O4 oxygen carrier for chemical looping combustion (CLC) of gaseous fuels: Relevance of gas-solid and oxygen uncoupling reactions[J]. Fuel Process Technol, 2015,133:210-219. doi: 10.1016/j.fuproc.2015.02.007

    6. [6]

      SHEN L H, WU J H, XIAO J. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier[J]. Combust Flame, 2009,156(3):721-728. doi: 10.1016/j.combustflame.2008.08.004

    7. [7]

      FORUTAN H R, KARIMI E, HAFIZI A, RAHIMPOUR M R, KESHAVARZ P. Expert representation chemical looping reforming: A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3[J]. J Ind Eng Chem, 2015,21:900-911. doi: 10.1016/j.jiec.2014.04.031

    8. [8]

      ADáNEZ-RUBIO I, GAYÁN P, ABAD A, DE DIEGO L F, GARCÍA-LABIANO F, ADÁNEZ J. Evaluation of a spray-dried CuO/MgAl2O4 oxygen carrier for the chemical looping with oxygen uncoupling process[J]. Energy Fuels, 2012,26(5):3069-3081. doi: 10.1021/ef3002229

    9. [9]

      SIRIWARDANE R, TIAN H, MILLER D, RICHARDS G. Fluidized bed testing of commercially prepared MgO-promoted hematite and CuO-Fe2O3 mixed metal oxide oxygen carriers for methane and coal chemical looping combustion[J]. Appl Energy, 2015,157:348-357. doi: 10.1016/j.apenergy.2015.04.042

    10. [10]

      LI K Z, WANG H, WEI Y G, YAN D X. Direct conversion of methane to synthesis gas using lattice oxygen of CeO2-Fe2O3 complex oxides[J]. Chem Eng J, 2010,156(3):512-518. doi: 10.1016/j.cej.2009.04.038

    11. [11]

      LIU Jie-xiang, ZHANG Xiang-guang. Theoretical investigation on the structure of anions intercalated MgAl-layered double hydroxides and the interaction between anions and host layer[J]. J Fuel Chem Technol, 2013,41(6):761-768.  

    12. [12]

      WANG L, DALIN L, WATANABE H, TAMURA M, NAKAGAWA Y, TOMISHIGE K. Catalytic performance and characterization of Co/Mg/Al catalysts prepared from hydrotalcite-like precursors for the steam gasification of biomass[J]. Appl Catal B: Environ, 2014,150:82-92.  

    13. [13]

      SONG Q L, LIU W, CHRISTOPHER D B, RYAN N H, EASAN S, STUART A S, JOHN S D. A high performance oxygen storage material for chemical looping processes with CO2 capture[J]. Energy Environ Sci, 2013,6(1):288-298. doi: 10.1039/C2EE22801G

    14. [14]

      LONG H, XU Y, ZHANG X Q, HU S J, SHANG S Y, YIN Y X, DAI X Y. Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane[J]. J Energy Chem, 2013,22(5):733-739. doi: 10.1016/S2095-4956(13)60097-2

    15. [15]

      LI B S, YUAN S L. Synthesis, characterization, and evaluation of TiMgAlCu mixed oxides as novel SOx removal catalysts[J]. Ceram Int, 2014,40(8):11559-11566. doi: 10.1016/j.ceramint.2014.03.112

    16. [16]

      GALINDO R, LÓPEZ-DELGADO A, PADILLA I, YATES M. Hydrotalcite-like compounds: A way to recover a hazardous waste in the aluminium tertiary industry[J]. Appl Clay, 2014,95:41-49. doi: 10.1016/j.clay.2014.03.022

    17. [17]

      BHUIYAN M R, LIN S D, HSIAO T C. Effect of calcination on Cu-Zn-loaded hydrotalcite catalysts for C-C bond formation derived from methanol[J]. Catal Today, 2014,226:150-159. doi: 10.1016/j.cattod.2013.10.053

    18. [18]

      DALIN L, KOIKE M, CHEN J H, NAKAGAWA Y, TOMISHIGE K. Preparation of Ni-Cu/Mg/Al catalysts from hydrotalcite-like compounds for hydrogen production by steam reforming of biomass tar[J]. Int J Hydrogen Energy, 2014,39(21):10959-10970. doi: 10.1016/j.ijhydene.2014.05.062

    19. [19]

      SIRIWARDANE R, TIAN H J, SIMONYI T, POSTON J. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion[J]. Fuel, 2013,108:319-333. doi: 10.1016/j.fuel.2013.01.023

    20. [20]

      HUANG Z, HE F, FENG Y P, ZHAO K, ZHENG A Q, CHANG S, WEI G Q, ZHAO Z L, LI H B. Biomass char direct chemical looping gasification using NiO-modified iron ore as an oxygen carrier[J]. Energy Fuels, 2014,28(1):183-191. doi: 10.1021/ef401528k

    21. [21]

      ZHU Xi-feng. Biomass Pyrolysis Principle and Technology[M]. Hefei: University of Science and Technology of China Press, 2006.

    22. [22]

      LUCRÉDIO A F, ASSAF J M, ASSAF E M. Reforming of a model sulfur-free biogas on Ni catalysts supported on Mg (Al) O derived from hydrotalcite precursors: Effect of La and Rh addition[J]. Biomass Bioenergy, 2014,60:8-17. doi: 10.1016/j.biombioe.2013.11.006

    23. [23]

      GAO P, LI F, XIAO F K, ZHAO N, WEI W, ZHONG L S, SUN Y H. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation: Introduction of Cu2+ at different formation stages of precursors[J]. Catal Today, 2012,194(1):9-15. doi: 10.1016/j.cattod.2012.06.012

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    7. [7]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    17. [17]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    18. [18]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    20. [20]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

Metrics
  • PDF Downloads(1)
  • Abstract views(1073)
  • HTML views(154)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return