Citation: GUO Hai-jun, LI Qing-lin, ZHANG Hai-rong, XIONG Lian, PENG Fen, YAO Shi-miao, CHEN Xin-de. Attapulgite supported Cu-Fe-Co based catalyst combination system for CO hydrogenation to lower alcohols[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1346-1356. shu

Attapulgite supported Cu-Fe-Co based catalyst combination system for CO hydrogenation to lower alcohols

  • Corresponding author: CHEN Xin-de, cxd_cxd@hotmail.com
  • Received Date: 12 August 2019
    Revised Date: 28 September 2019

    Fund Project: the Project of Jiangsu Province Science and Technology BE2018342the Science and Technology Program of Guangzhou 201707010240the Project of Guangdong Provincial Natural Science Foundation 2018A030313150The project was supported by the Science and Technology Program of Guangzhou (201707010240), the Project of Guangdong Provincial Natural Science Foundation (2018A030310126, 2018A030313150), the Project of Jiangsu Province Science and Technology (BE2018342) and the Project of Key Laboratory Foundation of Renewable Energy, Chinese Academy of Sciences (CAS) (Y807jc1001)the Project of Guangdong Provincial Natural Science Foundation 2018A030310126the Project of Key Laboratory Foundation of Renewable Energy, Chinese Academy of Sciences (CAS) Y807jc1001

Figures(7)

  • Attapulgite (ATP) and ATP mixed with SiO2 microspheres (ATPS) supported Cu-Fe-Co modified Fischer-Tropsch (F-T) catalysts were prepared by impregnation method (IM) and impregnation-solution combustion method (IMSC). The catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), hydrogen temperature-programmed reduction (H2-TPR) and CO2-temperature programmed desorption (CO2-TPD). The catalysts were also applied to lower alcohols synthesis from CO hydrogenation. Results show that the IMSC method is much beneficial for the loading, dispersion and reduction of CuO on the prepared catalyst than IM method, which promots the touch of H2 and CO with Cu active site. The optimum reaction temperature for lower alcohols synthesis is 280℃ for the catalysts prepared by both methods. Through the optimization of catalyst combination system between ATP and ATPS supported Cu-Fe-Co based catalysts (CFCK/ATP, CFCK/ATPS) and Cu/ZnO/Al2O3 catalyst (CZA) for methanol synthesis, the ideal catalyst combination system, CZA‖CFCK/ATPS-IMSC, is obtained for lower alcohols synthesis. For the dual-bed configuration, a lower alcohols selectivity of 39.6% with the fraction of C2+ alcohols of 22.7% in oxygenates is achieved at CO conversion of 46.3% via the product conversion coupling effect.
  • 加载中
    1. [1]

      ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry:Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev, 2019,48(12):3193-3228. doi: 10.1039/C8CS00502H

    2. [2]

      LUK H T, MONDELLI C, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A

    3. [3]

      AO M, PHAM G H, SUNARSO J, TADE M O, LIU S M. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8(8):7025-7050. doi: 10.1021/acscatal.8b01391

    4. [4]

      ZAMAN S, SMITH K J. A review of molybdenum catalysts for synthesis gas conversion to alcohols:Catalysts, mechanisms and kinetics[J]. Catal Rev, 2012,54(1):41-132. doi: 10.1080/01614940.2012.627224

    5. [5]

      AN Y L, LIN T J, YU F, YANG Y Z, ZHONG L S, WU M H, SUN Y H. Advances in direct production of value-added chemicals via syngas conversion[J]. Sci China Chem, 2017,60(7):887-903. doi: 10.1007/s11426-016-0464-1

    6. [6]

      XIAO Kang, BAO Zheng-hong, QI Xing-zhen, WANG Xin-xing, ZHONG Liang-shu, FANG Ke-gong, LIN Ming-gui, SUN Yu-han. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chin J Catal, 2013,34(1):116-129.  

    7. [7]

      DING M Y, TU J L, LIU J G, TSUBAKI N, WANG T J, MA L L. Copper-iron supported bimodal pore catalyst and its application for higher alcohols synthesis[J]. Catal Today, 2014,234:278-284. doi: 10.1016/j.cattod.2014.01.039

    8. [8]

      LIU Jian-guo, DING Ming-yue, WANG Tie-jun, MA Long-long. Structure and performance of Cu-Fe bimodal support for higher alcohol syntheses[J]. Acta Phys-Chim Sin, 2012,28(8):1964-1970. doi: 10.3866/PKU.WHXB201205213

    9. [9]

      HOU Bin, HAN Xin-you, LIN Ming-gui, FANG Ke-gong. Preparation of SiO2-coated CuFe catalysts for synthesis of higher alcohols from CO hydrogenation[J]. J Fuel Chem Technol, 2016,44(2):217-224. doi: 10.3969/j.issn.0253-2409.2016.02.012

    10. [10]

      GUO Hai-jun, XIONG Lian, LUO Cai-rong, DING Fei, CHEN Xin-de, CHEN Yong. Effect of Fe/Co mass ratio on catalytic performances of Cu-Fe-Co based catalysts for mixed alcohols synthesis[J]. Acta Phys-Chim Sin, 2011,27(11):2632-2638. doi: 10.3866/PKU.WHXB20111114

    11. [11]

      XIANG Y Z, CHITRY V, LIDDICOAT P, FELFER P, CAIRNEY J, RINGER S, KRUSE N. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. J Am Chem Soc, 2013,135(19):7114-7117. doi: 10.1021/ja402512r

    12. [12]

      GAO W, ZHAO Y F, CHEN H R, CHEN H, LI Y W, HE S, ZHANG Y K, WEI M, EVANS D G, DUAN X. Core-shell Cu@(CuCo-alloy)/Al2O3 catalysts for the synthesis of higher alcohols from syngas[J]. Green Chem, 2015,17(3):1525-1534. doi: 10.1039/C4GC01633E

    13. [13]

      GUO H J, LI S G, ZHANG H R, PENG F, XIONG L, YANG J, WANG C, CHEN X D, CHEN Y. Reaction condition optimization and lumped kinetics study for lower alcohols synthesis from syngas using a two-stage bed catalyst combination system[J]. Ind Eng Chem Res, 2014,53(1):123-131. doi: 10.1021/ie402422p

    14. [14]

      LIN T J, QI X Z, WANG X X, XIA L, WANG C Q, YU F, WANG H, LI S G, ZHONG L S, SUN Y H. Direct production of higher oxygenates by syngas conversion over amultifunctional catalyst[J]. Angew Chem Int Ed, 2019,58(14):4627-4631. doi: 10.1002/anie.201814611

    15. [15]

      DAS S K, MAJHI S, MOHANTY P, PANT K K. CO-hydrogenation of syngas to fuel using silica supported Fe-Cu-K catalysts:Effects of active components[J]. Fuel Process Technol, 2014,118:82-89. doi: 10.1016/j.fuproc.2013.08.014

    16. [16]

      MAO Dong-sen, GUO Qiang-sheng, YU Jun, HAN Lu-peng, LU Guan-zhong. Effect of Cerium addition on the catalytic performance of Cu-Fe/SiO2 for the synthesis of lower alcohols from syngas[J]. Acta Phys-Chim Sin, 2011,27(11):2639-2645. doi: 10.3866/PKU.WHXB20111125

    17. [17]

      LU R L, MAO D S, YU J, GUO Q S. Enhanced activity of Cu-Fe/SiO2 catalyst for CO hydrogenation to higher alcohols by pretreating the support with ammonia[J]. J Ind Eng Chem, 2015,25:338-343. doi: 10.1016/j.jiec.2014.11.013

    18. [18]

      GUO Qiang-sheng, MAO Dong-sen, YU Jun, HAN Lu-peng. Effects of different supports on the catalytic performance of supported Cu-Fe catalyst for CO hydrogenation[J]. J Fuel Chem Technol, 2012,40(9):1103-1109. doi: 10.3969/j.issn.0253-2409.2012.09.013 

    19. [19]

      SHI X P, YU H B, GAO S, LI X Y, FANG H H, LI R J, LI Y Y, ZHANG L J, LIANG X L, YUAN Y Z. Synergistic effect of nitrogen-doped carbon-nanotube-supported Cu-Fe catalyst for the synthesis of higher alcohols from syngas[J]. Fuel, 2017,210:241-248. doi: 10.1016/j.fuel.2017.08.064

    20. [20]

      LI Zhi-wen, CHEN Cong-biao, WANG Jun-gang, LIN Ming-gui, HOU Bo, JIA Li-tao, LI De-bao. Nitrogen-doped mesoporous carbon supported FeCu bimetallic catalyst and its CO hydrogenation performance[J]. J Fuel Chem Technol, 2019,47(6):709-717. doi: 10.3969/j.issn.0253-2409.2019.06.008 

    21. [21]

      LUK H T, MONDELLI C, MITCHELL S, SIOL S, STEWART J A, CURULLA FERRÉ D, PÉREZ-RAMÍREZ J. Role of carbonaceous supports and Potassium promoter on higher alcohols synthesis over copper-iron catalysts[J]. ACS Catal, 2018,8(10):9604-9618. doi: 10.1021/acscatal.8b02714

    22. [22]

      LUK H T, MONDELLI C, MITCHELL S, FERRE D C, STEWART J A, PEREZ-RAMIREZ J. Impact of carrier acidity on the conversion of syngas to higher alcohols over zeolite-supported copper-iron catalysts[J]. J Catal, 2019,371:116-125. doi: 10.1016/j.jcat.2019.01.021

    23. [23]

      JIANG J L, XU Y, DUANMU C S, GU X, CHEN J. Preparation and catalytic properties of sulfonated carbon-palygorskite solid acid catalyst[J]. Appl Clay Sci, 2014,95:260-264. doi: 10.1016/j.clay.2014.04.020

    24. [24]

      LI X Z, SHI H Y, ZHU W, ZUO S X, LU X W, LUO S P, LI Z Y, YAO C, CHEN Y S. Nanocomposite LaFe1-xNixO3/Palygorskite catalyst for photo-assisted reduction of NOx:Effect of Ni doping[J]. Appl Catal B:Environ, 2018,231:92-100. doi: 10.1016/j.apcatb.2018.03.008

    25. [25]

      OUYANG J, ZHAO Z, SUIB S L, YANG H M. Degradation of Congo Red dye by a Fe2O3@CeO2-ZrO2/Palygorskite composite catalyst:Synergetic effects of Fe2O3[J]. J Colloid Interf Sci, 2019,539:135-145. doi: 10.1016/j.jcis.2018.12.052

    26. [26]

      WANG Y Z, WANG Y N, LI X, LIU Z T, ZHAO Y X. Effect of ultrasonic treatment of palygorskite on the catalytic performance of Pd-Cu/palygorskite catalyst for room temperature CO oxidation in humid circumstances[J]. Environ Technol, 2018,39(6):780-786. doi: 10.1080/09593330.2017.1311944

    27. [27]

      GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, HUANG C, WANG C, CHEN X D, MA L L. Mixed alcohols synthesis from syngas over activated palygorskite supported Cu-Fe-Co based catalysts[J]. Appl Clay Sci, 2015,111:83-89. doi: 10.1016/j.clay.2015.03.009

    28. [28]

      GUO X M, MAO D S, LU G Z, WANG S, WU G S. Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. J Catal, 2010,271(2):178-185. doi: 10.1016/j.jcat.2010.01.009

    29. [29]

      CHU Z, CHEN H B, YU Y, WANG Q, FANG D Y. Surfactant-assisted preparation of Cu/ZnO/Al2O3 catalyst for methanol synthesis from syngas[J]. J Mol Catal A:Chem, 2013,366:48-53. doi: 10.1016/j.molcata.2012.09.007

    30. [30]

      LEI H, HOU Z Y, XIE J W. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016,164:191-198. doi: 10.1016/j.fuel.2015.09.082

    31. [31]

      GRUNWALDT J D, MOLENBROEK A M, TOPSØE N Y, TOPSØE H, CLAUSEN B S. In situ investigations of structural changes in Cu/ZnO catalysts[J]. J Catal, 2000,194(2):452-460. doi: 10.1006/jcat.2000.2930

    32. [32]

      XU R, YANG C, WEI W, LI W H, SUN Y H, HU T D. Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J]. J Mol Catal A:Chem, 2004,221(1/2):51-58.  

    33. [33]

      XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas:Effect of calcination temperature[J]. J Mol Catal A:Chem, 2005,234(1/2):75-83. doi: 10.1016/j.molcata.2005.01.048

    34. [34]

      DING M Y, QIU M H, LIU J G, LI Y P, WANG T J, MA L L, WU C Z. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for higher alcohols synthesis[J]. Fuel, 2013,109:21-27. doi: 10.1016/j.fuel.2012.06.034

    35. [35]

      TIEN-THAO N, ZAHEDI-NIAKI M H, ALAMDARI H, KALIAGUINE S. Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors[J]. Appl Catal A:Gen, 2007,326(2):152-163. doi: 10.1016/j.apcata.2007.04.009

    36. [36]

      GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catal, 2011,1(6):641-656. doi: 10.1021/cs2001048

    37. [37]

      GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, WANG C, HUANG C, CHEN X D, MA L L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Appl Catal A:Gen, 2015,503:51-61. doi: 10.1016/j.apcata.2015.07.008

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    5. [5]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    6. [6]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    8. [8]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    11. [11]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    12. [12]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(3)
  • Abstract views(1190)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return