Citation: ZHAO Hai-bo, SONG Qiang, WU Xing-yuan, YAO Qiang. Transformation of alkali and alkaline earth metallic species during pyrolysis and CO2 gasification of rice straw char[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 27-33. shu

Transformation of alkali and alkaline earth metallic species during pyrolysis and CO2 gasification of rice straw char

  • Corresponding author: SONG Qiang, qsong@tsinghua.edu.cn
  • Received Date: 19 September 2017
    Revised Date: 1 December 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (51076072) and Major State Basic Research Development Program of China (973 Program, 2013CB228500)Major State Basic Research Development Program of China 973 Program, 2013CB228500the National Natural Science Foundation of China 51076072

Figures(6)

  • The release of alkali and alkaline earth metallic species (AAEMs) can cause serious technical problems during biomass thermal utilization. The release characteristics of AAEMs from rice straw char during pyrolysis in N2 and CO2 gasification at 900℃ were investigated using a fixed-bed reactor. The release and transformation results of AAEMs under both atmospheres were obtained based on analysis of solid residues sampled after different residence time, and effect of CO2 atmosphere on AAEMs migration was discussed. Under both pyrolysis and gasification conditions, K release ratio initially increased rapidly and the growth rate reduced with time. At early stage of gasification, K release ratio is higher than that after pyrolysis for the same time, while the K release ratio is almost same at late stage of gasification and pyrolysis. Little amounts of Ca and Mg were released during both pyrolysis and gasification. During pyrolysis, fractions of acid-soluble K and Ca first decreased and then remained nearly constant, while the fraction of acid-soluble Mg always remained constant. During gasification, the fraction of acid-soluble K first decreased slowly and then decreased rapidly, while that of Ca and Mg increased first and then reduced with time. At early stage of gasification, the fractions of acid-soluble AAEMs were higher than that after pyrolysis. At last stage of gasification, significant higher fractions of insoluble AAEMs were formed. CO2 atmosphere facilitated release of K by enhancing decomposition and release of char-K. Insoluble char-associated AAEMs are transformed to be acid-soluble due to consumption of char matrix. At the end of gasification, significant insoluble AAEM-silicates compounds were formed.
  • 加载中
    1. [1]

      SANDER B. Properties of Danish biofuels and the requirements for power production[J]. Biomass Bioenergy, 1997,12(3):177-183. doi: 10.1016/S0961-9534(96)00072-4

    2. [2]

      BAXTER L L, MILES T R, JENKINS B M, MILNE T, DAYTON D, BRYERSE R W, ODENF L L. The behavior of inorganic material in biomass-fired power boilers:Field and laboratory experiences[J]. Fuel Process Technol, 1998,54(1):47-78.  

    3. [3]

      JENSEN P A, FRANDSEN F J, DAM-JOHANSEN K, SANDER B. Experimental investigation of the transformation and release to gas phase of potassium and chlorine during straw pyrolysis[J]. Energy Fuels, 2000,14(6):1280-1285. doi: 10.1021/ef000104v

    4. [4]

      VAN LITH S C, ALONSO-RAMAIREZ V, JENSEN P A, FRANDSEN F J, GLARBORG P. Release to the gas phase of inorganic elements during wood combustion. Part 1. development and evaluation of quantification methods[J]. Energy Fuels, 2006,20(3):964-978. doi: 10.1021/ef050131r

    5. [5]

      YIP K, TIAN F, HAYASHI J I, WU H. Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy Fuels, 2009,24(1):173-181.  

    6. [6]

      WU Hong-xiang, ZHAO Zeng-li, ZHANG Wei, LI Hai-bin, HE Fang. Effects of alkali/alkaline earth metals on pyrolysis characteristics of cellulose[J]. Trans CSAE, 2012,28(4):215-220.  

    7. [7]

      TAN Hong, WANG Shu-rong, LUO Zhong-yang, YU Chun-jiang, CEN Ke-fa. Influence of metallic salt on biomass flash pyrolysis characteristics[J]. J Eng Thermophys, 2005,26(5):742-744.  

    8. [8]

      YAO Kui, ZHANG Jin-gang, ZHU Huai-li, WANG Xing-jun, YU Guang-suo, LIU Hai-feng, WANG Fu-chen. Catalytic effect of biomass ash on the hydrogasification of coal char[J]. J Fuel Chem Technol, 2017,45(1):21-28.  

    9. [9]

      OKUNO T, SONOYAMA N, HAYASHIH J I, LI C Z, SATHE C, CHIBA T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy Fuels, 2005,19(5):2164-2171. doi: 10.1021/ef050002a

    10. [10]

      DU Sheng-lei, YANG Hai-ping, QIAN Ke-zhen, YAO Ding-ding, WANG Xian-hua, CHEN Han-ping. Releasing behavior of alkali and alkaline earth metals during biomass pyrolysis[J]. Proc CSEE, 2013,33(26):48-53.  

    11. [11]

      ZHANG Yan-ping, JIN Bao-sheng, LIU Ren-ping. Factors affecting alkali release and transformation during corncob combustion[J]. Acta Energy Sol Sin, 2009,30(2):261-265.  

    12. [12]

      KNUDSEN J N, JENSEN P A, DAM-JOHANSEN K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy Fuels, 2004,18(5):1385-1399. doi: 10.1021/ef049944q

    13. [13]

      ZHANG Zhi-hao. Research on the transformation of alkali species during biomass thermal conversion[D]. Beijing:Tsinghua University, 2014. 

    14. [14]

      YE Jia-ming, JI Xi, YANG Jin-xin, DENG Lei, CHE De-fu. Study on release and transformation of potassium during pyrolysis and combustion of biomass[J]. J Eng Thermophys, 2017,38(9):2033-2037.  

    15. [15]

      TCHOFFOR P A, DAVIDSSON K O, THUNMAN H. Effects of steam on the release of potassium, chlorine, and sulfur during char conversion, investigated under dual-fluidized-bed gasification conditions[J]. Energy Fuels, 2014,28(11):6953-6965. doi: 10.1021/ef501591m

    16. [16]

      DAVIDSSON K O, STOJKOVA B J, PETTERSSON J B. Alkali emission from birchwood particles during rapid pyrolysis[J]. Energy Fuels, 2002,16(5):1033-1039. doi: 10.1021/ef010257y

    17. [17]

      ZHAO H B, SONG Q, WU X Y, QIANG Y. Study on the transformation of Inherent potassium during the fast-pyrolysis process of rice straw[J]. Energy Fuels, 2015,29(10):6404-6411. doi: 10.1021/acs.energyfuels.5b00851

    18. [18]

      STRÖMBERG B, ZINT F. Release of chlorine from biomass and model compounds at pyrolysis and gasification conditions[C]//. Progress in Thermochemical Biomass Conversion, 2001:1234-1245.

    19. [19]

      RAHIM M U, GAO X, WU H. Release of chlorine from the slow pyrolysis of NaCl-loaded cellulose at low temperatures[J]. Proc Combust Inst, 2015,35(3):2891-2896. doi: 10.1016/j.proci.2014.07.020

    20. [20]

      WANG Y, WU H, SÄROSSY Z, DONG C Q, GLARBORG P. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass[J]. Fuel, 2017,197(1):422-432.  

    21. [21]

      LEHMANR L, GENTRY J S, GLUMAC N G. Thermal stability of potassium carbonate near its melting point[J]. Thermochim Acta, 1998,316(1):1-9. doi: 10.1016/S0040-6031(98)00289-5

    22. [22]

      WEI X L, SCHNELL U, HEIN K R. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilization[J]. Fuel, 2005,84(7):841-848.  

    23. [23]

      WU H, QUYN D M, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅲ. The importance of the interactions between volatiles and char at high temperature[J]. Fuel, 2002,81(8):1033-1039. doi: 10.1016/S0016-2361(02)00011-X

    24. [24]

      KEOWN D M, FAVAS G, HAYASHI J, LI C Z. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass:differences between sugar cane bagasse and cane trash[J]. Bioresour Technol, 2005,96(14):1570-1577. doi: 10.1016/j.biortech.2004.12.014

  • 加载中
    1. [1]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    2. [2]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    3. [3]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    10. [10]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    11. [11]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    15. [15]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

Metrics
  • PDF Downloads(4)
  • Abstract views(1170)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return