Citation: LI Xia, ZENG Fan-gui, SI Jia-kang, WANG Wei, DONG Kui, CHENG Li-yuan. High resolution TEM image analysis of coals with different metamorphic degrees[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 279-286. shu

High resolution TEM image analysis of coals with different metamorphic degrees

  • Corresponding author: ZENG Fan-gui, zengfangui@tyut.edu.cn
  • Received Date: 21 October 2015
    Revised Date: 29 December 2015

    Fund Project: Shanxi Province Coal Based Key Scientific and Technological Projects MQ2014-01National Natural Science Foundation of China 41402137National Natural Science Foundation of China 41302127

Figures(6)

  • The structural characteristics of 3 coals with different metamorphic degrees were analyzed using high-resolution transmission electron microscopy (HRTEM). Applying FFT-IFFT method, in association with Matlab, Arcgis and AutoCAD softwares, the lattice fringe parameters obtained from HRTEM image were determined using image analysis. The results indicate that the lattice fringes of all the test coal samples exhibit different characteristics. These lattice fringes can be divided into 8 types (1×1-8×8 aromatic fringes) according to the fringe length distribution. Taking the 3×3 aromatic fringe as critical point, the sample ML-8 abundant in 1×1 and 2×2 aromatic fringes while short of 3×3-8×8 aromatic fringes when comparing with sample DP-4 and sample XM-3. The values of d002 obtained from both HRTEM and XRD show a decreasing trend with increasing vitrinite reflectance.
  • 加载中
    1. [1]

      MATHEWS J P, SHARMA A. The structural alignment of coal and the analogous case of Argonne Upper Freeport coal[J]. Fuel, 2012,95:19-24. doi: 10.1016/j.fuel.2011.12.046

    2. [2]

      YANG J, CHENG S, WANG X, ZHANG Z, LIU X R, TANG G H. Quantitative analysis of microstructure of carbon materials by HRTEM[J]. Trans Nonferrous Met Soc China, 2006,16(S2):S796-S803.  

    3. [3]

      SHARMA A, KYOTANI T, TOMITZ A. Direct observation of layered structure of coals by a transmission electron microscope[J]. Energy Fuels, 2000,14(2):515-516. doi: 10.1021/ef990253h

    4. [4]

      SHARMA A, KYOTANI T, TOMITA A. Comparison of structural parameters of PF carbon from XRD and HRTEM techniques[J]. Carbon, 2000,34(14):1977-1984.  

    5. [5]

      ASO H, MATSUOKA K, SHARMA A, TOMITA A. Evaluation of size of graphene sheet in anthracite by a temperature-programmed oxidation method[J]. Energy Fuels, 2004,18(5):1309-1314. doi: 10.1021/ef030176x

    6. [6]

      SHARMA A, KYOTANI T, TOMITA A. A new quantitative approach for microsctructural analysis of coal char using HRTEM images[J]. Fuel, 1999,78(10):1203-1212. doi: 10.1016/S0016-2361(99)00046-0

    7. [7]

      SHIM H-S, HURT R H, YANG N Y C. A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons[J]. Carbon, 2000,38(1):29-45. doi: 10.1016/S0008-6223(99)00096-2

    8. [8]

      SHARMA A, KYOTANI T, TOMITA A. Direct observation of raw coals in lattice fringe mode using high-resolution transmission electron microscopy[J]. Energy Fuels, 2000,14(6):1219-1225. doi: 10.1021/ef0000936

    9. [9]

      PALOTÁS A B, RAINEY L C, SAROFIM A F, SANDE J B V, CIAMBELLI P. Effect of oxidation on the microstructure themicrostructure of carbon blacks[J]. Energy Fuels, 1996,10(1):254-259. doi: 10.1021/ef950168j

    10. [10]

      WORNAT M J, HURT R H, YANG N Y C, HEADLEY T J. Structural and compositional transformations of biomass chars during combustion[J]. Combust Flame, 1995,100(1/2)131.  

    11. [11]

      NIEKERK D V, MATHEWS J P. Molecular representations of Permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010,89(1):73-82. doi: 10.1016/j.fuel.2009.07.020

    12. [12]

      YEHLIU K, VANDER WAL R L, BOEHMAN A L. Development of an HRTEM image analysis method to quantify carbon nanostructure[J]. Combust Flame, 2011,158(1):1837-1851.  

    13. [13]

      MATHEWS J P, FERNANDEZ-ALSO V, DANIEL J A, SCHOBERT H H. Determining the molecular weight distribution of Pocahontas No. 3 low-volatile bituminous coal utilizing HRTEM and laser desorption ionization mass spectra data[J]. Fuel, 2010,89(7):1461-1469. doi: 10.1016/j.fuel.2009.10.014

    14. [14]

      CASTRO-MARCANO F, LOBODIN V V, RODGERS R P, MCKENNA A M, MARSHALL A G, MATHEWS J P. A molecular model for Illinois No. 6 Argonne Premium coal: Moving toward capturing the continuum structure[J]. Fuel, 2012,95:35-49. doi: 10.1016/j.fuel.2011.12.026

    15. [15]

      GUO Ya-nan, TANG Yue-gang, WANG Shao-qing, LI Wei-wei, JIA Long. Maceral separation of bark liptobiolite and molecular structure study through high resolution TEM images[J]. J China Coal Soc, 2013,38(6):1019-1024.  

    16. [16]

      CASTRO-MARCANO F, LOBODIN V V, RODGERS R P, MCKENNA A M, MARSHALL A G, MATHEWS J P. A molecular model for Illinois No. 6 Argonne Premium coal: Moving toward capturing the continuum structure[J]. Fuel, 2012,95:35-49. doi: 10.1016/j.fuel.2011.12.026

    17. [17]

      REN Xiu-bin, XIN Wen-hui, ZHANG Ya-ting, ZHOU An-ning. Structural alignment of low rank coal using HRTEM technique[J]. J China Coal Soc, 2015,40(S1):242-246.  

    18. [18]

      ZHANG Xiao-dong, KONG Ling-fei, QIN Yong, ZHANG Peng. Research on the microcrystalline structure of the fractionally-extracted Longkou lignite by XRD and HRTEM[J]. J China Coal Soc, 2013,38(6):1025-1030.  

    19. [19]

      JU Y W, LI X S. New research progress on the ultrastructure of tectonically deformed coals[J]. Prog Nat Sci, 2009,19(11):1455-1466. doi: 10.1016/j.pnsc.2009.03.013

    20. [20]

      ENDO M, FURUTA T, MINOURA F, KIM C, OSHIDA K, DRESSELHAUS G, DRESSELHAUS M S. Visualized observation of pores in activated carbon fibers by HRTEM and combined image processor[J]. Supramol Sci, 1998,5(S3/4):261-266.  

    21. [21]

      TAKAGI H, MARUYAMA K, YOSHIZAWA N, YAMAD A Y, SATO Y. XRD analysis of carbon stacking structure in coal during heat treatment[J]. Fuel, 2004,83(S17/18):2427-2433.  

    22. [22]

      HUANG Z H, KANG F Y, HUANG W L, YANG J B, LIANG K M, CUI M L, CHENG Z Y. Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM[J]. J Colloid Interface Sci, 2002,249(2):453-457. doi: 10.1006/jcis.2002.8274

    23. [23]

      PALOTAS A B, RAINEY L C, FELDERMANN C J, SAROFIM A F, Vander SANDE J B. Soot morphology: An application of image analysis in high-resolution transmission electron microscopy[J]. Microsc Res Technol, 1996,33(3):266-278. doi: 10.1002/(ISSN)1097-0029

    24. [24]

      YANG Qi. The Coal Metamorphism in China[M]. Beijing: Press of Coal Industry, 1996: 154.

    25. [25]

      ZHAO Feng-hua, REN De-yi. The application of high-resolution transmission electron microscopy to study the structures of coal macerals[J]. Geol Rev, 1995,41(6):564-570.  

    26. [26]

      CABIOC'H T, THUNE E, JAOUEN M. Carbon-onion thin-film synthesis onto silica substrates[J]. Chem Phys Lett, 2000,320(1/2):202-205.  

    27. [27]

      HAN De-xin. Coal Petrology in China[M]. Xuzhou: China University of Mining and Technology Press, 1996: 260.

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

    3. [3]

      Zhaoyang Li Haiyan Zhao Yali Zhang Yuan Zhang Shiqiang Cui . Integration of Nobel Prize Achievements in Analytical Technology with College Instrumental Analysis Course. University Chemistry, 2025, 40(3): 269-276. doi: 10.12461/PKU.DXHX202405131

    4. [4]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    5. [5]

      Yan Zhang Ping Wang Tiebo Xiao Futing Zi Yunlong Chen . Measures for Ideological and Political Construction in Analytical Chemistry Curriculum. University Chemistry, 2024, 39(4): 255-260. doi: 10.3866/PKU.DXHX202401017

    6. [6]

      Xiaofei Zhou Yu-Qing Cao Feng Zhu Li Qi Linhai Liu Ni Yan Zhiqiang Zhu . Missions and Challenges of Instrumental Analysis Course in the New Era. University Chemistry, 2024, 39(6): 174-180. doi: 10.3866/PKU.DXHX202310058

    7. [7]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    8. [8]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    9. [9]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    10. [10]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    11. [11]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    12. [12]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    13. [13]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    14. [14]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Guangming Yang Yunhui Long . Design and Implementation of Analytical Chemistry Curriculum Based on the Learning Community of Teachers and Students. University Chemistry, 2024, 39(3): 132-137. doi: 10.3866/PKU.DXHX202309089

    17. [17]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    18. [18]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    19. [19]

      Qiang Xu Rong Zhang Liyan Zhang Jinxuan Liu Shuo Wu Rongwen Lv . Exploration and Practice of Ideological and Political Education Construction in the Course of Practical Instrument Analysis Theory. University Chemistry, 2024, 39(6): 132-136. doi: 10.3866/PKU.DXHX202311018

    20. [20]

      Tian Li Liping Zhang Ling Liu Ruifang Li Longfei Mao Hui Yang . Reform and Practice of Analytical Chemistry Teaching under the Guidance of Course Ideology and Politics. University Chemistry, 2024, 39(6): 189-194. doi: 10.3866/PKU.DXHX202310014

Metrics
  • PDF Downloads(6)
  • Abstract views(1809)
  • HTML views(302)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return