Citation: Wang Yongtian, Han Changcai, Liu Hongtao. Development and Applications of Anion Photoelectron Spectroscopy[J]. Chemistry, ;2020, 83(1): 3-9. shu

Development and Applications of Anion Photoelectron Spectroscopy

  • Corresponding author: Liu Hongtao, liuhongtao@sinap.ac.cn
  • Received Date: 16 October 2019
    Accepted Date: 4 November 2019

Figures(4)

  • Anion photoelectron spectroscopy (aPES) has become one of the most important techniques for exploring the fundamental problems of spectroscopy and chemical dynamics. In this paper, the development history of aPES and its applications in the study of electronic structures and bonding characteristics of actinide elements and compounds, beryllium-containing compounds are briefly reviewed. Several major techniques in the development of aPES including zero electron kinetic energy (ZEKE) and slow electron velocity-map imaging (SEVI) techniques to improve resolution are reviewed. Subsequently, the combination of electrospray ionization (ESI) source and aPES to study the electronic properties of multiply charged anions and their corresponding neutral molecules under gas phase conditions are introduced. The progress made in the study of the electronic structure and bonding properties of actinides and their compounds, beryllium-containing compounds by aPES are then discussed.
  • 加载中
    1. [1]

      Cooper J, Zare R N. J. Chem. Phys., 1968, 48(2):942~943. 

    2. [2]

      Leopold D G, Ho J, Lineberger W C. J. Chem. Phys., 1987, 86(4):1715~1726. 

    3. [3]

      Li J, Li X, Zhai H J, et al. Science, 2003, 299(5608):864~867. 

    4. [4]

      Häkkinen H, Yoon B, Landman U, et al. J. Phys. Chem. A, 2003, 107(32):6168~6175. 

    5. [5]

      Shao N, Huang W, Gao Y, et al. J. Am. Chem. Soc., 2010, 132(18):6596~6605. 

    6. [6]

      Pande S, Huang W, Shao N, et al. ACS Nano, 2016, 10(11):10013~10022. 

    7. [7]

      Huang W, Ji M, Dong C D, et al. ACS Nano, 2008, 2(5):897~904. 

    8. [8]

      Bulusu S, Li X, Wang L S, et al. PNAS, 2006, 103(22):8326~8330. 

    9. [9]

      Kostko O, Huber B, Moseler M, et al. Phys. Rev. Lett., 2007, 98(4):043401. 

    10. [10]

      Wang L S. Int. Rev. Phys. Chem., 2016, 35(1):69~142. 

    11. [11]

      Markovich G, Pollack S, Giniger R, et al. J. Chem. Phys., 1994, 101(11):9344~9353. 

    12. [12]

      Wang X B, Yang X, Wang L S, et al. J. Chem. Phys., 2002, 116(2):561~570. 

    13. [13]

      Wang X B, Yang X, Nicholas J B, et al. J. Chem. Phys., 2003, 119(7):3631~3640. 

    14. [14]

      Hendricks J H, de Clercq H L, Freidhoff C B, et al. J. Chem. Phys., 2002, 116(18):7926~7938. 

    15. [15]

      Arnold S T, Hendricks J H, Bowen K H. J. Chem. Phys., 1995, 102(1):39~47. 

    16. [16]

      Mabbs R, Surber E, Sanov A. J. Chem. Phys., 2005, 122(5):54308. 

    17. [17]

      Sobhy M A, Casalenuovo K, Reveles J U, et al. J. Phys. Chem. A, 2010, 114(42):11353~11363. 

    18. [18]

      Castleman A, Bowen K. J. Phys. Chem., 1996, 100(31):12911~12944. 

    19. [19]

      Schiedt J, Weinkauf R, Neumark D M, et al. Chem. Phys., 1998, 239(1-3):511~524. 

    20. [20]

      Verlet J, Bragg A, Kammrath A, et al. Science, 2005, 307(5706):93~96. 

    21. [21]

      Polanyi J C, Zewail A H. Acc. Chem. Res., 2002, 28(3):119~132. 

    22. [22]

      Yacovitch T I, Garand E, Kim J B, et al. Faraday Discus., 2012, 157:399~414. 

    23. [23]

      Gómez H, Meloni G, Madrid J, et al. J. Chem. Phys., 2003, 119(2):872~879. 

    24. [24]

      Yang X, Wang X B, Wang L S. J. Chem. Phys., 2001, 115(7):2889~2892. 

    25. [25]

      Brehm B, Gusinow M A, Hall J L. Phys. Rev. Lett., 1967, 19(13):737~741. 

    26. [26]

      Hotop H, Bennett R A, Lineberger W C. J. Chem. Phys., 1973, 58(6):2373~2378. 

    27. [27]

      Feigerle C S, Corderman R R, Lineberger W C. J. Chem. Phys., 1981, 74(2):1513~1515. 

    28. [28]

      Feigerle C S, Corderman R R, Bobashev S V, et al. J. Chem. Phys., 1981, 74(3):1580~1598. 

    29. [29]

      Leopold D G, Lineberger W C. J. Chem. Phys., 1986, 85(1):51~55. 

    30. [30]

      Kasdan A, Lineberger W C. Phys. Rev. A, 1974, 10(5):1658~1664. 

    31. [31]

      Kasdan A, Herbst E, Lineberger W C. J. Chem. Phys., 1975, 62(2):541~548. 

    32. [32]

      Miller T M, Miller A E, Lineberger W C. Phys. Rev. A, 1986, 33(5):3558~3559. 

    33. [33]

      Posey L A, Deluca M J, Johnson M A. Chem.Phys. Lett., 1986, 131(3):170~174. 

    34. [34]

      Cheshnovsky O, Yang S, Pettiette C, et al. Chem. Phys. Lett., 1987, 138(2-3):119~124. 

    35. [35]

      Waller I, Kitsopoulos T, Neumark D. J. Phys. Chem., 1990, 94(6):2240~2242. 

    36. [36]

      Cheshnovsky O, Taylor K J, Conceicao J, et al. Phys. Rev. Lett., 1990, 64(15):1785~1788. 

    37. [37]

      Yang J, Wang X B, Xing X P, et al. J. Chem. Phys., 2008, 128(20):201102. 

    38. [38]

      Wang L S, Cheng H S, Fan J. J. Chem. Phys., 1995, 102(24):9480~9493. 

    39. [39]

      Handschuh H, Ganteför G, Eberhardt W. Rev. Sci. Instrum., 1995, 66(7):3838~3843. 

    40. [40]

      Giniger R, Hippler T, Ronen S, et al. Rev. Sci. Instrum., 2001, 72(6):2543~2549. 

    41. [41]

      Thomas O C, Zheng W, Bowen K H. J. Chem. Phys., 2001, 114(13):5514~5519. 

    42. [42]

      Baguenard B, Pinare J, Lepine F, et al. Chem. Phys. Lett., 2002, 352(3-4):147~153. 

    43. [43]

      Surber E, Sanov A. J. Chem. Phys., 2002, 116(14):5921~5924. 

    44. [44]

      Chandler D W, Houston P L. J. Chem. Phys., 1987, 87(2):1445~1447. 

    45. [45]

      Helm H, Bjerre N, Dyer M J, et al. Phys. Rev. Lett., 1993, 70(21):3221~3224. 

    46. [46]

      Eppink A T J B, Parker D H. Rev. Sci. Instrum., 1997, 68(9):3477~3484. 

    47. [47]

      Müller-Dethlefs K, Sander M, Schlag E W. Chem. Phys. Lett., 1984, 112(4):291~294. 

    48. [48]

      Muller-Dethlefs K, Schlag E W. Ann. Rev. Phys. Chem., 1991, 42(1):109~136. 

    49. [49]

      Arnold C C, Neumark D M, Cyr D M, et al. J. Phys. Chem., 1995, 99(6):1633~1636. 

    50. [50]

      Kitsopoulos T, Waller I, Loeser J, et al. Chem. Phys. Lett., 1989, 159(4):300~306. 

    51. [51]

      Metz R, Weaver A, Bradforth S, et al. J. Phys. Chem., 1990, 94(4):1377~1388. 

    52. [52]

      Lenzer T, Yourshaw I, Furlanetto M R, et al. J. Chem. Phys., 1999, 110(19):9578~9586. 

    53. [53]

      Simons J. J. Phys. Chem. A, 2008, 112(29):6401~6511. 

    54. [54]

      Reed K J, Zimmerman A H, Andersen H C, et al. J. Chem. Phys., 1976, 64(4):1368~1375. 

    55. [55]

      Wigner E P. Phys. Rev., 1948, 73(9):1002~1009. 

    56. [56]

      Osterwalder A, Nee M J, Zhou J, et al. J. Chem. Phys., 2004, 121(13):6317~6322. 

    57. [57]

      Neumark D M. J. Phys. Chem. A, 2008, 112(51):13287~13301. 

    58. [58]

      Schauer S N, Williams P, Compton R N. Phys. Rev. Lett., 1990, 65(5):625~628. 

    59. [59]

      Middleton R, Klein J. Nucl. Instrum. Meth. B, 1997, 123(1-4):532~538. 

    60. [60]

      Calabrese D, Covington A M, Thompson J S. J. Chem. Phys., 1996, 105(7):2936~2937. 

    61. [61]

      Klein J, Middleton R. Nucl. Instrum. Meth. B, 1999, 159(1-2):8~21. 

    62. [62]

      Middleton R, Klein J. Phys. Rev. A, 1999, 60(5):3515. 

    63. [63]

      Gnaser H. Phys. Rev. A, 1999, 60(4):R2645. 

    64. [64]

      Yamashita M, Fenn J B. J. Phys. Chem., 1984, 88(20):4451~4459. 

    65. [65]

      M Yamashita, J B Fenn. J. Phys. Chem., 1984, 88(20):4671~4675. 

    66. [66]

      Wang L S, Ding C F, Wang X B, et al. Rev. Sci. Instrum., 1999, 70(4):1957~1966. 

    67. [67]

      Wang X B, Ding C F, Wang L S. Phys. Rev. Lett., 1998, 81(16):3351. 

    68. [68]

      Wang L S, Ding C F, Wang X B, et al. Phys. Rev. Lett., 1998, 81(13):2667. 

    69. [69]

      Wang X B, Wang L S. Nature, 1999, 400(6741):245~248. 

    70. [70]

      Wang X B, Wang L S. Phys. Rev. Lett., 1999, 83(17):3402. 

    71. [71]

      Wang X B, Nicholas J B, Wang L S. J. Chem. Phys., 2000, 113(24):10837~10840. 

    72. [72]

      Wang X B, Yang X, Nicholas J B, et al. Science, 2001, 294(5545):1322~1325. 

    73. [73]

      Wang X B, Yang X, Wang L S. Int. Rev. Phys. Chem., 2010, 21(3):473~498. 

    74. [74]

      Yang X, Fu Y J, Wang X B, et al. J. Am. Chem. Soc., 2004, 126(3):876~883. 

    75. [75]

      Minofar B, Mucha M, Jungwirth P, et al. J. Am. Chem. Soc., 2004, 126(37):11691~11698. 

    76. [76]

      Cavanagh S J, Gibson S T, Gale M N, et al. Phys. Rev. A, 2007, 76(5):052708. 

    77. [77]

      Townsend D, Minitti M P, Suits A G. Rev. Sci. Instrum., 2003, 74(4):2530~2539. 

    78. [78]

      Leon I, Yang Z, Liu H T, et al. Rev. Sci. Instrum., 2014, 85(8):083106. 

    79. [79]

      Chen X, Ning C. Phys. Rev. A, 2016, 93(5). 

    80. [80]

      Chen X, Luo Z, Li J, et al. Sci. Rep., 2016, 6:24996. 

    81. [81]

      Chen X, Ning C. J. Chem. Phys., 2016, 145(8):084303. 

    82. [82]

      Weichman M L, DeVine J A, Levine D S, et al. PNAS, 2016, 113(7):1698~1705. 

    83. [83]

      Wang X B, Wang L S. Rev. Sci. Instrum., 2008, 79(7):073108. 

    84. [84]

      Wang X B, Woo H K, Wang L S. J. Chem. Phys., 2005, 123(5):051106. 

    85. [85]

      Woo H K, Wang X B,Wang L S, et al. J. Phys. Chem. A, 2005, 109(47):10633~10637. 

    86. [86]

      Woo H K, Wang X B, Kiran B, et al. J. Phys. Chem. A, 2005, 109(50):11395~11400. 

    87. [87]

      Hock C, Kim J B, Weichman M L, et al. J. Chem. Phys., 2012, 137(24):244201. 

    88. [88]

      Luo Z, Chen X, Li J, et al. Phys. Rev. A, 2016, 93(2):020501. 

    89. [89]

      Bartels C, Hock C, Kuhnen R, et al. J. Phys. Chem. A, 2014, 118(37):8270~8276. 

    90. [90]

      Wang L S. Phys. Chem. Chem. Phys., 2010, 12(31):8694~8705. 

    91. [91]

      Gao Y, Huang W, Woodford J, et al. J. Am. Chem. Soc., 2009, 131(27):9484~9485. 

    92. [92]

      Cui L F, Wang L S. Int. Rev. Phys. Chem., 2008, 27(1):139~166. 

    93. [93]

      Pande S, Jian T, Khetrapal N S, et al. J. Phys. Chem. C, 2018, 122(12):6947~6954. 

    94. [94]

      Li W L, Chen X, Jian T, et al. Nat. Rev. Chem., 2017, 1(10):0071. 

    95. [95]

      Weichman M L, Neumark D M. Ann. Rev. Phys. Chem., 2018, 69:101~124. 

    96. [96]

      Young R M, Neumark D M. Chem. Rev., 2012, 112(11):5553~5577. 

    97. [97]

      Liu G, Zhu Z, Ciborowski S M, et al. Angew. Chem., 2019, 58(23):7773~7777. 

    98. [98]

      Visser B R, Addicoat M A, Gascooke J R, et al. J. Chem. Phys., 2016, 145(4):044320. 

    99. [99]

      Hirata K, Tomihara R, Kim K, et al. Phys. Chem. Chem. Phys., 2019, 21(32):17463~17474. 

    100. [100]

      Wu X, Tan K, Tang Z, et al. Phys. Chem. Chem. Phys., 2014, 16(10):4771~4777. 

    101. [101]

      Liu J-X, Liu Z, FilotI A W, et al. Catal, Sci, Technol,, 2017, 7(1):75~83. 

    102. [102]

      Felton J, Ray M, Jarrold C C. Phys, Rev, A, 2014, 89(3):033407. 

    103. [103]

      Ashkin A. Phys. Rev. Lett., 1978, 40(12):729~732. 

    104. [104]

      Wineland D J, Drullinger R E, Walls F L. Phys. Rev. Lett., 1978, 40(25):1639~1642. 

    105. [105]

      Neuhauser W, Hohenstatt M, Toschek P, et al. Phys. Rev. Lett., 1978, 41(4):233~236. 

    106. [106]

      Wieman C E, Pritchard D E, Wineland D J. Rev. Modern Phys., 1999, 71(2):S253. 

    107. [107]

      Cronin A D, Schmiedmayer J, Pritchard D E. Rev. Modern Phys., 2009, 81(3):1051~1129. 

    108. [108]

      Andersen T. Phys. Rep., 2004, 394(4-5):157~313. 

    109. [109]

      Cerchiari G, Kellerbauer A, Safronova M S, et al. Phys. Rev. Lett.,2018, 120(13):133205. 

    110. [110]

      Tang R, Si R, Fei Z, et al. Phys. Rev. Lett., 2019, 123:203002. 

    111. [111]

      Li Y, Zou J, Xiong X G, et al. J. Phys. Chem. A, 2017, 121(10):2108~2113. 

    112. [112]

      Li Y, Zou J, Xiong X G, et al. J. Chem. Phys., 2018, 148(24):244304. 

    113. [113]

      Mascaritolo K J, Dermer A R, Green M L, et al. J. Chem. Phys., 2017, 146(5):054301. 

    114. [114]

      Dermer A R, Green M L, Mascaritolo K J, et al. J. Phys. Chem. A, 2017, 121(30):5645~5650. 

    115. [115]

      Green M L, Jean P, Heaven M C. J. Phys. Chem. Lett., 2018, 9(8):1999~2002. 

  • 加载中
    1. [1]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    2. [2]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    3. [3]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    11. [11]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    12. [12]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    16. [16]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    17. [17]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    18. [18]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

Metrics
  • PDF Downloads(22)
  • Abstract views(1793)
  • HTML views(461)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return