Citation: DENG Li-fang, DONG Ge, CAI Xi-xi, TANG Jia-huan, YUAN Hao-ran. Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 120-128. shu

Biochar derived from the inner membrane of passion fruit as cathode catalyst of microbial fuel cells in neutral solution

  • Corresponding author: YUAN Hao-ran, yuanhaoran81@gmail.com
  • Received Date: 22 June 2017
    Revised Date: 12 October 2017

    Fund Project: the National Basic Research Program of China YZ201516Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation (Fujian Agriculture and Forestry University) ptjh16002Guangdong Provincial Projects 2016A040403096Guangdong Provincial Projects 2015B090904009The project was supported by the National Basic Research Program of China (973 Program, 2015BAL04B02, YZ201516), Guangdong Provincial Projects (2015B090904009, 2016A040403096) and Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation (Fujian Agriculture and Forestry University)(ptjh16002)the National Basic Research Program of China 2015BAL04B02the National Basic Research Program of China 973 Program

Figures(5)

  • Biochar nano-sheets (BXG-AC) with high surface area and porous structure were prepared by direct pyrolysis of the inner membrane of passion fruit and subsequent KOH activation. The morphology and surface elemental composition of BXG-AC were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) and the electrochemical behaviors were investigated by cyclic voltammetry and linear sweep voltammograms (LSV). The results indicate that in neutral media, the as-prepared BXG-AC catalyst exhibits remarkable electrocatalytical activity; a maximum power density of 1153.3 mW/m2 is achieved in the microbial fuel cells (MFCs), which is comparable to that of commercial Pt/C (1214.3 mW/m2). Furthermore, the BXG-AC cathode also displays a great long-term stability; the MFC output decreases slightly after operation for more than 60 cycles. This study demonstrates that the biochar nano-sheets derived from the inner membrane of passion fruit is probably a cost-efficient and promising cathodic catalyst for the scale-up MFCs.
  • 加载中
    1. [1]

      LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREGUIA S, AELERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. doi: 10.1021/es0605016

    2. [2]

      ZHOU Xiu-xiu, GU Zao-li, HAO Xiao-xuan, ZHANG Jiao, ZHANG Zhi-qiang, XIA Si-qing. Efficacy and mechanism of microbial fuel cell treating Cr (VI)-containing wastewater with excess sludge as substrate[J]. China Environ Sci, 2014,34(9):2245-2251.  

    3. [3]

      ROZENDAL R A, HAMELERS H V M, RABAEY K, KELLER J, BUISMAN C J N. Towards practical implementation of bioelectrochemical wastewater treatment[J]. Trends Biotechnol, 2008,26(8):450-459. doi: 10.1016/j.tibtech.2008.04.008

    4. [4]

      FENG L Y, YAN Y Y, CHEN Y G, WANG L J. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells[J]. Energy Environ Sci, 2011,4(5):1892-1899. doi: 10.1039/c1ee01153g

    5. [5]

      BAI Li-jun, WANG Xu-yun, HE Hai-bo, GUO Qing-jie. Preparation and characterization of M-N-C as cathode catalysts for microbial fuel cell[J]. CIESC J, 2014,65(4):1267-1272.  

    6. [6]

      HUILONG F, RUQUAN Y, GONGLAN Y. Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction[J]. ACS Nano, 2014,8(10):10837-10843. doi: 10.1021/nn504637y

    7. [7]

      WAN W, WANG Q, ZHANG L. N-, P-and Fe-tridoped nanoporous carbon derived from plant biomass:An excellent oxygen reduction electrocatalyst for zinc-air battery[J]. J Mater Chem A, 2016,4(22):8602-8609. doi: 10.1039/C6TA02150F

    8. [8]

      ZHOU L H, FU P, WEN D H, YUAN Y, ZHOU S G. Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts[J]. Appl Catal B:Environ, 2016,181:635-643. doi: 10.1016/j.apcatb.2015.08.035

    9. [9]

      YUAN H R, DENG L F, CAI X X, ZHOU S G, CHEN Y, YUAN Y. Nitrogen-doped carbon sheets derived from chitin as non-metal bifunctional electrocatalysts for oxygen reduction and evolution[J]. RSC Adv, 2015,5(69):56121-56129. doi: 10.1039/C5RA05461C

    10. [10]

      SONG M Y, PARK H Y, YANG D S, BHATTACHARJVA D, YU J S. Seaweed-derived heteroatom-doped highly porous carbon as an electrocatalyst for the oxygen reduction reaction[J]. ChemSusChem, 2014,7(6):1764-1764. doi: 10.1002/cssc.201490026

    11. [11]

      GAO S, FAN H, ZHANG S. Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity[J]. J Mater Chem A, 2014,2(43):18263-18270. doi: 10.1039/C4TA03558E

    12. [12]

      YANG W, LI J, YE D D, ZHU X, LIAO Q. Bamboo charcoal as a cost-effective catalyst for an air-cathode of microbial fuel cells[J]. Electrochim Acta, 2017,224:585-592. doi: 10.1016/j.electacta.2016.12.046

    13. [13]

      MA Y W, ZHANG L R, LI J J, NI H T, LI M, ZHANG J L, FENG X M, FAN Q L, HU Z, HUANG W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction[J]. Chin Sci Bull, 2011,56(33):3583-3589. doi: 10.1007/s11434-011-4730-6

    14. [14]

      AHMED J, KIM H J, KIM S. Polyaniline nanofiber/carbon black composite as oxygen reduction catalyst for air cathode microbial fuel cells[J]. J Electrochem Soc, 2012,159(5):B497-B501. doi: 10.1149/2.049205jes

    15. [15]

      DENG L F, YUAN H R, CAI X X, RUAN Y Y, ZHOU S G, CHEN Y, YUAN Y. Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells[J]. Int J Hydrogen Energy, 2016,41(47):22328-22336. doi: 10.1016/j.ijhydene.2016.08.132

    16. [16]

      FENG H B, ZHENG M T, DONG H W, HA H, YONG X, SUN Z X, LONG C, CAI Y J, ZHAO X, ZHANG H R, LEI B F, Liu Y L. Three-dimensional honeycomb-like hierarchically structured carbon for high-performance supercapacitors derived from high-ash-content sewage sludge[J]. J Mater Chem A, 2015,3(29):15225-15234. doi: 10.1039/C5TA03217B

    17. [17]

      DAS A, PISANA S, CHAKRABORTY B, PISCANEC S, SAHA S K, WAGHMARE U V, NOVOSELOV K S, KRISHNAMURTHY H R, GEIM A K, FERRARI A C, SOOD A K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nat Nanotechnol, 2008,3(4):210-215. doi: 10.1038/nnano.2008.67

    18. [18]

      HARRY M, DENIS S Y. Formation of active carbons from cokes using potassium hydroxide[J]. Carbon, 1984,22(6):603-611. doi: 10.1016/0008-6223(84)90096-4

    19. [19]

      GUO Y P, YANG S F, YU K F, ZHAO J Z, WANG Z C, XU H D. The preparation and mechanism studies of rice husk based porous carbon[J]. Mater Chem Phys, 2002,74(3):320-323. doi: 10.1016/S0254-0584(01)00473-4

    20. [20]

      HIROKI A, THOMAS K, FRANCO C, WILLIAN R S, MILO S P S, ALAN H W, RICHARD H F. Work functions and surface functional groups of multiwall carbon nanotubes[J]. J Phys Chem B, 1999,103(28):8116-8121.

    21. [21]

      BAKER S E, CAI W, KASSETER T L, WEIDKAMP K P, HAMERS R J. Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes:Synthesis and hybridization[J]. Nano Lett, 2002,2(12):1413-1417. doi: 10.1021/nl025729f

    22. [22]

      MARTINEZ M T, CALLEJAS M A, BENITO A M, COCHET M. Sensitivity of single wall carbon nanotubes to oxidative processing:structural modification, intercalation and functionalization[J]. Carbon, 2003,41(12):2247-2256. doi: 10.1016/S0008-6223(03)00250-1

    23. [23]

      TAN Z A, ZHANG W Q, QIAN D P, CUI C H, XU Q, LI L J, LI S S, LI Y F. Solution-processed nickel acetate as hole collection layer for polymer solar cells[J]. Phys Chem Chem Phys, 2012,14(41):14217-14223. doi: 10.1039/c2cp41465a

    24. [24]

      JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Chem Eur J, 2014,20(11):3106-3112. doi: 10.1002/chem.201304561

    25. [25]

      LIU Q, CHEN S L, ZHOU Y, ZHENG S Q, HOU H Q, ZHAO F. Phosphorus-doped carbon derived from cellulose phosphate as efficient catalyst for air-cathode in microbial fuel cells[J]. J Power Sources, 2014,261:245-248. doi: 10.1016/j.jpowsour.2014.03.060

    26. [26]

      SHAO Y Y, SUI J H, YIN G P, GAO Y Z. Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell[J]. Appl Catal B:Environ, 2008,79(1):89-99. doi: 10.1016/j.apcatb.2007.09.047

    27. [27]

      YANG D S, BHATTACHARJYA D, INAMDAR S, PARK J, YU J S. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J Am Chem Soc, 2012,134(39):16127-16130. doi: 10.1021/ja306376s

    28. [28]

      JIANG H L, ZHU Y H, FENG Q, SU Y H, YANG X L, LI C Z. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Chem Eur J, 2014,20(11):3106-3112. doi: 10.1002/chem.201304561

    29. [29]

      SU Y H, JIANG H L, ZHU Y H, ZOU W J, YANG X L, CHEN J D, LI C Z. Hierarchical porous iron and nitrogen co-doped carbons as efficient oxygen reduction electrocatalysts in neutral media[J]. J Power Sources, 2014,265:246-253. doi: 10.1016/j.jpowsour.2014.04.140

    30. [30]

      FENG L Y, CHEN Y G, CHEN L. Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped raphene and its application as cathode catalyst in microbial fuel cells[J]. ACS Nano, 2011,5(12):9611-9618. doi: 10.1021/nn202906f

    31. [31]

      WANG R, WANG H, ZHOU T. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction[J]. J Power Sources, 2015,274:741-747. doi: 10.1016/j.jpowsour.2014.10.049

    32. [32]

      ROCHE I, CHAINET E, CHATENET M, VONDRAK J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. J Phys Chem C, 2007,111(3):1434-1443. doi: 10.1021/jp0647986

  • 加载中
    1. [1]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    2. [2]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    3. [3]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    4. [4]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    9. [9]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    10. [10]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(9)
  • Abstract views(1155)
  • HTML views(188)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return