Citation: HUANG Yu-hui, REN Guo-qing, SUN Jiao, WANG Chong-qing, CHEN Xiao-rong, MEI Hua. Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 726-731. shu

Effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol

  • Corresponding author: WANG Chong-qing, cqw@njtech.edu.cn
  • Received Date: 26 February 2016
    Revised Date: 31 March 2016

Figures(9)

  • The catalysts of CuZnAl-1, CuZnAl-2 and CuZnAl-3 were prepared by the co-precipitation method using NaOH, Na2CO3 and Na2CO3/NaOH, respectively, as the precipitant. They were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, H2-temperature programmed reduction (H2-TPR), TGA, and NH3-temperature programmed desorption (NH3-TPD); the effect of precipitant on the performance of CuZnAl catalysts in the gas phase selective hydrogenation of furfural to furfuryl alcohol was then investigated in a fixed bed reactor. The results illustrate that all three catalysts exhibit high furfural conversion, whereas the CuZnAl-3 catalyst gives the highest selectivity to furfuryl alcohol. The precipitant has a great impact on the phase structure, surface area, acidity and redox property of the resultant CuZnAl catalysts. The CuZnAl-3 catalyst prepared with Na2CO3/NaOH precipitant exhibits proper specific surface area, CuO crystalline phase, weak acid sites and easily reducible CuO on the catalyst surface, which are conducive to produce furfuryl alcohol for the hydrogenation of furfural. Under the optimizing reaction condition, viz., atmospheric pressure, 180℃, hydrogen to furfural molar ratio of 5 and furfural volume space velocity of 0.3h-1, the conversion of furfural over the CuZnAl-3 catalyst reaches 99.4%, with a selectivity of 98.3% to furfuryl alcohol.
  • 加载中
    1. [1]

      YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemical[J]. Renew Sust Energ Rev, 2014,38(5):663-676.  

    2. [2]

      WEINGARTEN R, TOMPSETT G A, CONNER W C, HUBER G W. Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates:The role of Lewis and Brφnsted acid sites[J]. J Catal, 2011,279(1):174-182. doi: 10.1016/j.jcat.2011.01.013

    3. [3]

      MANDALIK A, LI Q, SATO T K, RUNGE T. Integrated biorefinery model based on production of furans using open-ended high yield processes[J]. Green Chem, 2014,16(5):2480-2489. doi: 10.1039/C3GC42424C

    4. [4]

      BARR J B, WALLON S B. The chemistry of furfuryl alcohol resins[J]. J Appl Polym Sci, 1971,15(5):1079-1090. doi: 10.1002/app.1971.070150504

    5. [5]

      SRIVASTAVA S, SOLANKI N, MOHANTY P, SHAH K A, PARIKH J K, DALAI A K. Optimization and kinetic studies on hydrogenation of furfural to furfuryl alcohol over SBA-15 supported bimetallic copper-cobalt catalyst[J]. Catal Lett, 2015,145(3):816-823. doi: 10.1007/s10562-015-1488-5

    6. [6]

      VILLAVERDE M M, GARETTO T F, MARCHI A J. Liquid-phase transfer hydrogenation of furfural to furfuryl alcohol on Cu-Mg-Al catalysts[J]. Catal Commun, 2015,58:6-10. doi: 10.1016/j.catcom.2014.08.021

    7. [7]

      ZHANG Ding-guo, LIU Fen, LI Fa-liang, YANG Chuo. Study on modification of Cu-Zn/γ-Al2O3 catalysts of hydrogenation of furfural to furfuryl alcohol[J]. Chem React Eng Technol, 2007,23(2):136-140.

    8. [8]

      ZHENG Hong-yan, ZHU Yu-lei, HUANG Long, XIANG Hong-wei, LI Yong-wang. Study on Cu-Mn-Si catalysts for the coupling process of cyclohexanol dehydrogenation and furfural hydrogenation:Effect of pH value and calcination temperature[J]. J Fuel Chem Technol, 2008,36(5):631-636.  

    9. [9]

      LIAW B J, CHIANG S J, CHEN S W, CHEN Y Z. Preparation and catalysis of amorphous CoNiB and polymer-stabilized CoNiB catalysts for hydrogenation of unsaturated aldehydes[J]. Appl Catal A:Gen, 2008,346(1/2):179-188.  

    10. [10]

      YANG J, ZHENG H Y, ZHU Y L, ZHAO G W, ZHANG C H, TENG B T. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing γ-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004,5(9):505-510. doi: 10.1016/j.catcom.2004.06.005

    11. [11]

      NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013,3(12):2655-2668. doi: 10.1021/cs400616p

    12. [12]

      BEHRENS M, BRENNECKE D, GIRGSDIES F. Understanding the complexity of a catalyst synthesis:Co-precipitation of mixed Cu, Zn, Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments[J]. Appl Catal A:Gen, 2011,392(1):93-102.  

    13. [13]

      DONG F, ZHU Y L, ZHENG H Y, ZHU Y F, LI X, LI Y Q. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran:The synergistic effect of metal and acid sites[J]. J Mol Catal A, 2015,398:140-148. doi: 10.1016/j.molcata.2014.12.001

    14. [14]

      YING T, YE L, PING Z, XUE Q, LI C, YONG L. High-performance HTLcs-derived CuZnAl catalysts for hydrogen production via methanol steam reforming[J]. AIChE J, 2009,55(55):1217-1228.  

    15. [15]

      GUO J H, XU G, HAN Z, ZHANG Y, FU Y, GUO Q X. Selective conversion of furfural to cyclopentanone with cuznal catalysts[J]. ACS Sust Chem Eng, 2014,2(10):2259-2266. doi: 10.1021/sc5003566

    16. [16]

      BORTS M S, GILCHENOK N D, GUREVICH G S, IGNATEV V M. Kinetics of vapor-phase hydrogenation of furfural on a copper-chromium catalyst[J]. J Appl Chem (USSR), 1986,59(1):114-117.

  • 加载中
    1. [1]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    10. [10]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Tiejun Su . The Construction and Application of the Calculation Formula for Endpoint Error in Precipitation Titration: A Case Study of the Mohr Method. University Chemistry, 2024, 39(11): 384-387. doi: 10.12461/PKU.DXHX202402039

    17. [17]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    18. [18]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

Metrics
  • PDF Downloads(0)
  • Abstract views(1043)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return