Citation: WANG Zhi-gang, BAI Jin, KONG Ling-xue, LI Huai-zhu, BAI Zong-qing, LI Wen. Regulation of high temperature flow properties of ash containing V and Ni[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1164-1171. shu

Regulation of high temperature flow properties of ash containing V and Ni

  • Corresponding author: BAI Jin, stone@sxicc.ac.cn
  • Received Date: 10 June 2017
    Revised Date: 17 August 2017

    Fund Project: the National Natural Science Foundation of China 21406254the National Natural Science Foundation of China 21706027The project was supported by the Natural Science Foundation of Shandong Province (ZR2016BL23), the National Natural Science Foundation of China (21706027, 21476247 and 21406254) and Science and technology project of Dezhou university (2016kjrc11)the National Natural Science Foundation of China 21476247Science and technology project of Dezhou university 2016kjrc11The Natural Science Foundation of Shandong Province ZR2016BL23

Figures(10)

  • Three ashes containing V and Ni were preparation for the study. CaO addition and coal ash blending were chosen for regulation of high temperature flow properties. The regulation mechanism was explored by XRD, SEM-EDX and ternary phase diagram analysis. The results show that karelianite and Ni are main refractory matters in petroleum coke ash at high temperature. CaO addition and coal ash blending decrease the liquid temperatures of ash components except V and Ni, which reduces the ash fusion temperatures. When the contents of V and Ni are fewer than 30% in ash, CaO can obviously decrease the fusion temperature of ash, and the viscosity-temperature property becomes crystal type. When the contents of V and Ni are higher than 30% in ash, coal ash blending is an effective method to decrease the fusion temperature. In this condition, 5% of coal ash blending ratio is required, and its viscosity-temperature property is suitable for slag tapping, but when the coal ash proportion is 10% the viscosity-temperature property of ash becomes crystal type for the precipitation of vanadium-rich spinel, which cannot meet the requirement of slag tapping.
  • 加载中
    1. [1]

      MIAO Chao, YANG Wei-jun, WANG Hao. Situation and trends in petroleum coke supply & demand by region of the world-Highlights for Argus Asia Petroleum Coke Summit[J]. Int Petrol Econ, 2014,22(5):15-20.  

    2. [2]

      LEE S H, YOON S J, RA H W, SON Y I, HONG J C, LEE J G. Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier[J]. Energy, 2010,35(8):3239-3244. doi: 10.1016/j.energy.2010.04.007

    3. [3]

      ZHAN X, ZHOU Z, KANG W, WANG F. Promoted slurry ability of petroleum coke-water slurry by using black liquor as an additive[J]. Fuel Process Technol, 2010,91(10):1256-1260. doi: 10.1016/j.fuproc.2010.04.006

    4. [4]

      SUN Z, DAI Z, ZHOU Z, XU J, YU G. Comparative study of gasification performance between bituminous coal and petroleum coke in the industrial opposed multiburner entrained flow gasifier[J]. Energy Fuels, 2012,26(11):6792-6802.

    5. [5]

      LI Wen, BAI Jin. Coal Ash Chemistry[M]. Beijing:Science Press, 2013.

    6. [6]

      BRYERS R W. Utilization of petroleum coke and petroleum blends as a means of steam raising coke/coal[J]. Fuel Process Technol, 1995,44(1):121-141.  

    7. [7]

      JIA L, ANTHONY E J, CHARLAND J P. Investigation of vanadium compounds in ashes from a CFBC firing 100% petroleum coke[J]. Energy Fuels, 2002,16(2):397-403. doi: 10.1021/ef010238o

    8. [8]

      PARK W, OH M S. Slagging of petroleum coke ash using Korean anthracites[J]. J Ind and Eng Chem, 2008,14(3):350-356. doi: 10.1016/j.jiec.2007.12.004

    9. [9]

      DUCHENSNE M A, ILYUSHECHKIN A Y, HUGHES R W, LU D Y, MCCALDEN D J, MACCHI A, ANTHONY E J. Flow behaviour of slags from coal and petroleum coke blends[J]. Fuel, 2012,97(7):321-328.  

    10. [10]

      WANG Z, BAI J, KONG L, BAI Z, LI W. Effect of V and Ni on ash fusion temperatures[J]. Energy Fuels, 2013,27(12):7303-7313. doi: 10.1021/ef401651w

    11. [11]

      WANG Z, BAI J, KONG L, WEN X, LI X, BAI Z, LI W, SHI Y. Viscosity of coal ash slag containing vanadium and nickel[J]. Fuel Process Technol, 2015,136:25-33. doi: 10.1016/j.fuproc.2014.07.025

    12. [12]

      KONG Ling-xue, BAI Jin, LI Wen, BAI Zong-qing, GUO Zhen-xing. Effect of lime addition on slag fluidity of coal ash[J]. J Fuel Chem Technol, 2011,39(6):407-412.  

    13. [13]

      WANG Da-chuan, LIANG Qin-feng, GONG Xin, LIU Hai-feng, LIU Xia. Fusion properties of Zhujixi washed coal ash adding fluxes[J]. J Fuel Chem Technol, 2015,43(2):153-157.  

    14. [14]

      KONG Ling-xue. Study on flow properties of representative coal ashes at high temperature[D]. Taiyuan:Institute of Coal Chemistry Chinese Academy of Sciences, 2013.

    15. [15]

      LIU Tao, LI Xin-xin, WANG Wei-lin, WU Jia-feng, LIANG Peng. The affecting factors and regulaton of ash fusion characteristics[J]. J Shandong Univ Sci Technol, 2014,33(4):43-49.  

    16. [16]

      BAI J, LI W, LI C, BAI Z, LI B. Influence of coal blending on mineral transformation at high temperatures[J]. Min Sci Tech, 2009,19(3):300-305.

    17. [17]

      XU Rong-sheng, WANG Yong-gang, LIN Xiong-chao, YANG Sa-sha, AI Sha-jiang, YANG Yuan-ping. Mineralogical properties of lowering coal ash melting temperature using blending coal and fluxing agent[J]. J Fuel Chem Technol, 2015,43(11):1303-1308.  

    18. [18]

      LI H, YOSHIHIKO N, DONG Z, ZHANG M. Application of the FactSage to predict the ash melting behavior in reducing conditions[J]. Chinese J Chem Eng, 2006,14(6):784-789. doi: 10.1016/S1004-9541(07)60012-3

    19. [19]

      NAKANO J, KWONG K S, BENNETT J, LAM T, FERNADEZ L, KOMLWIT P, SRIDHAR S. Phase equilibria in synthetic coal-pet coke slags(Al2O3-CaO-FeO-SiO2-V2O3) under simulated gasification conditions[J]. Energy Fuels, 2011,25(7):3298-3306. doi: 10.1021/ef200633q

  • 加载中
    1. [1]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    2. [2]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    3. [3]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    4. [4]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    5. [5]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    6. [6]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    7. [7]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    10. [10]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    11. [11]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    12. [12]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    13. [13]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    14. [14]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    15. [15]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    16. [16]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    17. [17]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(1)
  • Abstract views(1324)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return