Citation: Xiao Kang, Wang Qiong, Chen Yuehua. Decomposition Process of Cu/ZnO Methanol Catalyst Precursor: An In Situ Observation by TEM[J]. Chemistry, ;2018, 81(11): 992-999. shu

Decomposition Process of Cu/ZnO Methanol Catalyst Precursor: An In Situ Observation by TEM

  • Received Date: 27 June 2018
    Accepted Date: 1 August 2018

Figures(11)

  • The decomposition process of one of the best methanol catalyst precursors, zincian malachite, was studied, and the structural change during the decomposition was in situ observed by TEM. HRTEM, ED and STEM mapping analysis suggest that there are mainly four decomposition stages. That is, the zincian malachite crystal firstly decomposes at random zones and outer surface, causing local structural collapse, accompanying with holes formation in the bulk and amorphous diffused layer formation on the surface; then the holes grow larger and more holes appeare, and the collapsed layer on surface further diffuse. Meanwhile, CuO crystallizes gradually at both hole sites and diffused layer regions. Finally, the structure of zincian malachite completely collapses to afford intersected CuO and ZnO in the form of crystalline CuO separated by amorphous ZnO. After that, ZnO begin to crystallize under further heating to give the final calcined catalyst with interdispersed CuO crystallites and ZnO crystallites. The direct observation of structural change during decomposition promotes our understanding on the calcination process of methanol catalyst precursors, and gives clues for optimizing calcination condition.
  • 加载中
    1. [1]

      X M Liu, G Q Lu, Z F Yan et al. Ind. Eng. Chem. Res., 2003, 42:6518~6530. 

    2. [2]

      M Behrens, R Schlogl. Z. Anorg. Allg. Chem., 2013, 639:2683~2695. 

    3. [3]

      S Kvisle, T Fuglerud, S Kolboe et al. Methanol to Hydrocarbons, in:Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

    4. [4]

      U Olsbye, S Svelle, M Bjorgen et al. Angew. Chem. Int. Ed., 2012, 51:5810~5831. 

    5. [5]

      A S Aricò, S Srinivasan, V Antonucci. Fuel Cells, 2001, 1:133~161. 

    6. [6]

      H A Gasteiger, J Garche. Fuel Cells, in:Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

    7. [7]

      J B Hansen, P E Højlund Nielsen. Methanol Synthesis, in:Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

    8. [8]

      M Behrens. Catal. Today, 2015, 246:46~54. 

    9. [9]

      M S Spencer. Catal. Lett., 2000, 66, 255~257. 

    10. [10]

      M Behrens, F Girgsdies. Z. Anorg. Allg. Chem., 2010, 636:919~927. 

    11. [11]

      J L Li, T Inui. Appl. Catal. A, 1996, 137:105~117. 

    12. [12]

      G J Millar, I H Holm, P J R Uwins et al. J. Chem. Soc.-Faraday Transac, 1998, 94:593~600. 

    13. [13]

      F Girgsdies. M Behrens, Acta Cryst. B, 2012, 68:571~577. 

    14. [14]

      F Girgsdies, M Behrens. Acta Cryst. B, 2012, 68:107~117. 

    15. [15]

      T Ressler, B L Kniep, I Kasatkin et al. Angew. Chem. Int. Ed., 2005, 44:4704~4707. 

    16. [16]

      J Schumann, T Lunkenbein, A Tarasov et al. ChemcatChem, 2014, 6:2889~2897. 

    17. [17]

      M Behrens, S Zander, P Kurr et al. J. Am. Chem. Soc., 2013, 135:6061~6068. 

    18. [18]

      M Behrens, F Studt, I Kasatkin et al. Science, 2012, 336:893~897. 

    19. [19]

      S Kuld, M Thorhauge, H Falsig et al. Science, 2016, 352:969~974. 

    20. [20]

      B Bems, M Schur, A Dassenoy et al. Chem. Eur. J., 2003, 9:2039~2052. 

    21. [21]

      S Fujita, S Moribe, Y Kanamori et al. Appl. Catal. A, 2001, 207:121~128. 

    22. [22]

      S Fujita, S Moribe, Y Kanamori et al. React. Kinet. Catal. Lett., 2000, 70:11~16. 

    23. [23]

      J Schumann, A Tarasov, N Thomas et al. Appl. Catal. A, 2016, 516:117~126. 

    24. [24]

      M Reading, D Dollimore. Thermochim. Acta, 1994, 240:117~127. 

    25. [25]

      M J L Gines, C R Apesteguia. J. Thermal Anal., 1997, 50:745~756. 

    26. [26]

      A Tarasov, J Schumann, F Girgsdies et al. Thermochim. Acta, 2014, 591:1~9. 

    27. [27]

      V Vagvolgyi, A Locke, M Hales et al. Thermochim. Acta, 2008, 468:81~86. 

    28. [28]

      D B Williams, C B Carter. Transmission Electron Microscopy. A Textbook for Materials Science, Springer, 2009.

    29. [29]

      R F Egerton, P Li, M Malac. Micron, 2004, 35:399~409. 

    30. [30]

      I G Gonzalez-Martinez, A Bachmatiuk, V Bezugly et al. Nanoscale, 2016, 8:11340~11362. 

    31. [31]

      J Kacher, B Cui, I M Robertson. J. Mater. Res., 2015, 30:1202~1213. 

    32. [32]

      C Luo, C L Wang, X Wu et al. Small, 2017, 13:1604259. 

    33. [33]

      T Xu, L T Sun. Small, 2015, 11:3247~3262. 

    34. [34]

      K Xiao, Q Wang, X Qi et al. Catal. Lett., 2017, 147:1581~1591. 

    35. [35]

      M Behrens. J. Catal., 2009, 267:24~29. 

    36. [36]

      J Liu, X Li, Q Zhao et al. Appl. Catal. B, 2017, 200:297~308. 

    37. [37]

      Y Shen, L Wang, Y Wu et al. Catal. Commun., 2015, 68:11~14. 

  • 加载中
    1. [1]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    2. [2]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    3. [3]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    4. [4]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    5. [5]

      Kun ChenHuimin LinXin PengZiying WuJingyue DaiYi SunYaxuan FengZiyi HuangZhiqiang YuMeng YuGuangyu YaoJigang WangIn situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045

    6. [6]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    7. [7]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    8. [8]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    9. [9]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    10. [10]

      Hongwei Ma Fang Zhang Hui Ai Niu Zhang Shaochun Peng Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107

    11. [11]

      Kun WangTianxue GongYaohuang HuangBoyang HanHanxiao YangPavlo O. DralWeiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539

    12. [12]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    13. [13]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    14. [14]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    15. [15]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    16. [16]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    17. [17]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    18. [18]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    19. [19]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    20. [20]

      Kaili WangPengcheng LiuMingzhe WangTianran WeiJitao LuXingling ZhaoZaiyong JiangZhimin YuanXijun LiuJia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532

Metrics
  • PDF Downloads(3)
  • Abstract views(188)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return