Citation:
Xiao Kang, Wang Qiong, Chen Yuehua. Decomposition Process of Cu/ZnO Methanol Catalyst Precursor: An In Situ Observation by TEM[J]. Chemistry,
;2018, 81(11): 992-999.
-
The decomposition process of one of the best methanol catalyst precursors, zincian malachite, was studied, and the structural change during the decomposition was in situ observed by TEM. HRTEM, ED and STEM mapping analysis suggest that there are mainly four decomposition stages. That is, the zincian malachite crystal firstly decomposes at random zones and outer surface, causing local structural collapse, accompanying with holes formation in the bulk and amorphous diffused layer formation on the surface; then the holes grow larger and more holes appeare, and the collapsed layer on surface further diffuse. Meanwhile, CuO crystallizes gradually at both hole sites and diffused layer regions. Finally, the structure of zincian malachite completely collapses to afford intersected CuO and ZnO in the form of crystalline CuO separated by amorphous ZnO. After that, ZnO begin to crystallize under further heating to give the final calcined catalyst with interdispersed CuO crystallites and ZnO crystallites. The direct observation of structural change during decomposition promotes our understanding on the calcination process of methanol catalyst precursors, and gives clues for optimizing calcination condition.
-
-
-
[1]
X M Liu, G Q Lu, Z F Yan et al. Ind. Eng. Chem. Res., 2003, 42:6518~6530.
-
[2]
M Behrens, R Schlogl. Z. Anorg. Allg. Chem., 2013, 639:2683~2695.
-
[3]
S Kvisle, T Fuglerud, S Kolboe et al. Methanol to Hydrocarbons, in:Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
-
[4]
U Olsbye, S Svelle, M Bjorgen et al. Angew. Chem. Int. Ed., 2012, 51:5810~5831.
-
[5]
A S Aricò, S Srinivasan, V Antonucci. Fuel Cells, 2001, 1:133~161.
-
[6]
H A Gasteiger, J Garche. Fuel Cells, in:Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
-
[7]
J B Hansen, P E Højlund Nielsen. Methanol Synthesis, in:Handbook of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008.
- [8]
- [9]
-
[10]
M Behrens, F Girgsdies. Z. Anorg. Allg. Chem., 2010, 636:919~927.
- [11]
-
[12]
G J Millar, I H Holm, P J R Uwins et al. J. Chem. Soc.-Faraday Transac, 1998, 94:593~600.
- [13]
- [14]
-
[15]
T Ressler, B L Kniep, I Kasatkin et al. Angew. Chem. Int. Ed., 2005, 44:4704~4707.
-
[16]
J Schumann, T Lunkenbein, A Tarasov et al. ChemcatChem, 2014, 6:2889~2897.
-
[17]
M Behrens, S Zander, P Kurr et al. J. Am. Chem. Soc., 2013, 135:6061~6068.
-
[18]
M Behrens, F Studt, I Kasatkin et al. Science, 2012, 336:893~897.
-
[19]
S Kuld, M Thorhauge, H Falsig et al. Science, 2016, 352:969~974.
-
[20]
B Bems, M Schur, A Dassenoy et al. Chem. Eur. J., 2003, 9:2039~2052.
-
[21]
S Fujita, S Moribe, Y Kanamori et al. Appl. Catal. A, 2001, 207:121~128.
-
[22]
S Fujita, S Moribe, Y Kanamori et al. React. Kinet. Catal. Lett., 2000, 70:11~16.
-
[23]
J Schumann, A Tarasov, N Thomas et al. Appl. Catal. A, 2016, 516:117~126.
-
[24]
M Reading, D Dollimore. Thermochim. Acta, 1994, 240:117~127.
-
[25]
M J L Gines, C R Apesteguia. J. Thermal Anal., 1997, 50:745~756.
-
[26]
A Tarasov, J Schumann, F Girgsdies et al. Thermochim. Acta, 2014, 591:1~9.
-
[27]
V Vagvolgyi, A Locke, M Hales et al. Thermochim. Acta, 2008, 468:81~86.
-
[28]
D B Williams, C B Carter. Transmission Electron Microscopy. A Textbook for Materials Science, Springer, 2009.
- [29]
-
[30]
I G Gonzalez-Martinez, A Bachmatiuk, V Bezugly et al. Nanoscale, 2016, 8:11340~11362.
-
[31]
J Kacher, B Cui, I M Robertson. J. Mater. Res., 2015, 30:1202~1213.
- [32]
- [33]
-
[34]
K Xiao, Q Wang, X Qi et al. Catal. Lett., 2017, 147:1581~1591.
- [35]
-
[36]
J Liu, X Li, Q Zhao et al. Appl. Catal. B, 2017, 200:297~308.
- [37]
-
[1]
-
-
-
[1]
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
-
[2]
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
-
[3]
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
-
[4]
Mianling Yang , Meehyein Kim , Peng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455
-
[5]
Kun Chen , Huimin Lin , Xin Peng , Ziying Wu , Jingyue Dai , Yi Sun , Yaxuan Feng , Ziyi Huang , Zhiqiang Yu , Meng Yu , Guangyu Yao , Jigang Wang . In situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045
-
[6]
Zhifeng CAI , Ying WU , Yanan LI , Guiyu MENG , Tianyu MIAO , Yihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394
-
[7]
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
-
[8]
Zhaodong WANG . In situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268
-
[9]
Bofei JIA , Zhihao LIU , Zongyuan GAO , Shuai ZHOU , Mengxiang WU , Qian ZHANG , Xiamei ZHANG , Shuzhong CHEN , Xiaohan YANG , Yahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317
-
[10]
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
-
[11]
Kun Wang , Tianxue Gong , Yaohuang Huang , Boyang Han , Hanxiao Yang , Pavlo O. Dral , Weiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539
-
[12]
Jinglin CHENG , Xiaoming GUO , Tao MENG , Xu HU , Liang LI , Yanzhe WANG , Wenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152
-
[13]
Shaonan Tian , Yu Zhang , Qing Zeng , Junyu Zhong , Hui Liu , Lin Xu , Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160
-
[14]
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
-
[15]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[16]
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
-
[17]
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
-
[18]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[19]
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232
-
[20]
Kaili Wang , Pengcheng Liu , Mingzhe Wang , Tianran Wei , Jitao Lu , Xingling Zhao , Zaiyong Jiang , Zhimin Yuan , Xijun Liu , Jia He . Modulating d-d orbitals coupling in PtPdCu medium-entropy alloy aerogels to boost pH-general methanol electrooxidation performance. Chinese Chemical Letters, 2025, 36(4): 110532-. doi: 10.1016/j.cclet.2024.110532
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(189)
- HTML views(15)