Citation: ZHENG Fang, ZHU Guang-you, CHEN Zhi-qiang, ZHAO Qiu-li, SHI Quan. Molecular composition of vanadyl porphyrins in the gilsonite[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 562-567. shu

Molecular composition of vanadyl porphyrins in the gilsonite

  • Corresponding author: SHI Quan, geochem@vip.sina.com
  • Received Date: 24 February 2020
    Revised Date: 2 April 2020

Figures(5)

  • A gilsonite from Qingchuan (Sichuan province, China) was separated into several fractions and characterized by various techniques. The vanadyl porphyrins were determined by inductively coupled plasma optical emission spectrometer, ultraviolet-visible, high-temperature gas chromatography atomic emission detection, and positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The results show that the gilsonite contains a large amount of metal elements, especially the vanadium content is as high as 3888 μg/g. A large number of vanadyl porphyrins are detected, in which the deoxophylloerythroetio porphyrins are the most abundant, indicating high molecular condensation but low thermal maturity. The huge reserves and high metal content imply important utilization value for this natural source.
  • 加载中
    1. [1]

      LI Hai-hui. Rock asphalt status and development prospects[J]. Friend Sci, 2007(5):50-51.  

    2. [2]

      BOULDIN M G. Gilsonite modifier hard pen binder study[J]. American Gilsonite Company, 2002,5.

    3. [3]

      SISWOSOEBROTHO B I, KUSNIANTI N, TUMEWU W. Laboratory evaluation of lawele Buton natural asphalt in asphalt concrete mixture[C]//Proceedings of the Eastern Asia Society for Transportation Studies, 2005: 857-867. 

    4. [4]

      HADIWARDOYO S P, SINAGA E S, FIKRI H. The influence of Buton asphalt additive on skid resistance based on penetration index and temperature[J]. Constr Build Mater, 2013,42:5-10. doi: 10.1016/j.conbuildmat.2012.12.018

    5. [5]

      AMERI M, MANSOURIAN A, ASHANI S S, YADOLLAHI G. Technical study on the Iranian gilsonite as an additive for modification of asphalt binders used in pavement construction[J]. Constr Build Mater, 2011,25(3):1379-1387.  

    6. [6]

      LEE H J, LEE J H, PARK H M. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements[J]. Constr Build Mater, 2007,21(5):1079-1087. doi: 10.1016/j.conbuildmat.2006.01.003

    7. [7]

      FAN Liang, SHEN Quan-jun, ZHANG Yan-yan. Influence of performance of modif ied asphalt by native rock-asphalt[J]. J Build Master, 2007,10(6):740-744. doi: 10.3969/j.issn.1007-9629.2007.06.020

    8. [8]

      HUANG Gang, HE Zhao-yi, HU Cheng, HUANG Tao. Performance evaluation of rock modifieda sphalt based on analysis of microstructure and rheological propert[J]. J Southeast Univ, 2010,40(2):367-372. doi: 10.3969/j.issn.1001-0505.2010.02.029

    9. [9]

      LIN Xiao-guang, JIN Nian-sheng, LIN Li, YANG Zheng-zhi. Research on influences of natural rock asphalt on road performances of asphalt[J]. Technol Highw Transp, 2015,2:45-48.  

    10. [10]

      SHANG Zheng-qiang. The outstanding person in natural rock asphalt modifiers:Interview with Kong Xiangnian, General manager of Shandong expressway Qingchuan natural asphalt development Co, Ltd[J]. China Highw, 2006(18):96-97.  

    11. [11]

      TREIBS A. Chlorophyll- und häminderivate in bituminösen gesteinen, erdölen, erdwachsen und asphalten. ein beitrag zur entstehung des erdöls[J]. Justus Liebigs Ann Der Chem, 1934,510(1):42-62. doi: 10.1002/jlac.19345100103

    12. [12]

      TREIBS A. Chlorophyll- und häminderivate in organischen mineralstoffen[J]. Angew Chem, 1936,49(38):682-686. doi: 10.1002/ange.19360493803

    13. [13]

      BURTON J D. Some problems concerning the marine geochemistry of vanadium[J]. Nature, 1966,212(5066):976-978. doi: 10.1038/212976a0

    14. [14]

      BAKER E W, YEN T F, DICKIE J P, RHODES R E, CLARK L F. Mass spectrometry of porphyrins. II. Characterization of petroporphyrins[J]. J Am Chem Soc, 1967,89(14):3631-3639. doi: 10.1021/ja00990a050

    15. [15]

      DIDYK B M, ALTURKI Y I A, PILLINGER , AMP C T, EGLINTON G. Petroporphyrins as indicators of geothermal maturation[J]. Nature, 1975,256(256):563-565. doi: 10.1038/256563a0

    16. [16]

      DUNNING H N, MOORE J W, BIEBER H, WILLIAMS R B. Porphyrin, nickel, vanadium, and nitrogen in petroleum[J]. J Chem Eng Data, 1960,54:546-549. doi: 10.1021/je60008a036

    17. [17]

      HODGSON G W, HITCHON B, ELOFSON R M, BAKER B L, PEAKE E. Petroleum pigments from Recent fresh-water sediments[J]. Geochim Cosmochim Acta, 1960,19(4):272-288. doi: 10.1016/0016-7037(60)90034-X

    18. [18]

      HODGSON G, BAKER B. Evidence for porphyrins in the orgueil meteorite[J]. Nature, 1964,202(4928)125. doi: 10.1038/202125a0

    19. [19]

      HODGSON G W, BAKER B L, PEAKE E. The role of porphyrins in the geochemistry of petroleum[C]//7th World Petroleum Congress, 1967: 12.

    20. [20]

      DIDYK B M, ALTURKI Y I A, PILLINGER C T, EGLINTON G. Petroporphyrins as indicators of geothermal maturation[J]. Nature, 1975,256(5518):563-565. doi: 10.1038/256563a0

    21. [21]

      BARWISE A. Park P: Petroporphyrin fingerprinting as a geochemical marker, advances in organic geochemistry 1981: Wiley Chichester, 1983: 668-674. 

    22. [22]

      SUNDARARAMAN P. On the mechanism of change in DPEP/ETIO ratio with maturity[J]. Geochim Cosmochim Acta, 1993,57(18):4517-4520. doi: 10.1016/0016-7037(93)90501-M

    23. [23]

      FISH R H, REYNOLDS J G, GALLEGOS E J. Molecular characterization of nickel and vanadium nonporphyrin compounds found in heavy crude petroleums and bitumens: ACS Publications, 1987. 

    24. [24]

      DECHAINE G P, GRAY M R. Chemistry and association of vanadium compounds in heavy oil and bitumen, and implications for their selective removal[J]. Energy Fuels, 2010,24(5):2795-2808. doi: 10.1021/ef100173j

    25. [25]

      WANG Jian, XU Zhong-hui, MA Shun-ping, CHEN Teng-shui, LU Hong. The detection of abnormally high abundance diginane compounds in crude oil of Zhao 7 well in Jinxian Depression and their stable carbon isotope composition[J]. Acta Sendimentol Sin, 2009,27(2):372-379.  

  • 加载中
    1. [1]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    2. [2]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    3. [3]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    6. [6]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    7. [7]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    8. [8]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    9. [9]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    10. [10]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    15. [15]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    16. [16]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    17. [17]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    20. [20]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

Metrics
  • PDF Downloads(6)
  • Abstract views(1037)
  • HTML views(186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return