Citation: WU Guo-qiang, WANG Tao, WANG Jia-wei, ZHANG Yong-sheng, PAN Wei-ping. Occurrence forms of rare earth elements in coal and coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1498-1505. shu

Occurrence forms of rare earth elements in coal and coal gangue and their combustion products

  • Corresponding author: WANG Tao, wangtao0420@163.com
  • Received Date: 17 August 2020
    Revised Date: 10 October 2020

Figures(6)

  • Distribution of rare earth elements (REEs) in six speciations extracted from coal and coal gangue and their combustion products (slag and fly ash) generated by three different power plants in China were determined by sequential extraction procedure combined with inductively coupled plasma mass spectrometry method. The results show that the REEs mainly occurred as acid soluble and silicate & aluminosilicate fraction, e.g., approximately 42.54% and 45.62% in coal gangue, 32.85% and 57.13% in lignite, and 18.10% and 75.46% in bituminous coal, respectively. However, REEs in the combustion products were mainly presented in silicate & aluminosilicate fraction regardless of coal or coal gangue, reaching up to approximately 80% of the total REEs content. During combustion, around 36%, 23%, and 5% from the other five fractions (water soluble, ion-exchangeable, acid soluble, organic, and sulfide) were transformed to silicate & aluminosilicate fraction from coal gangue, lignite, and bituminous coal, respectively. In the case of coal or coal gangue, the amount of each REEs in the same extracted fraction was different, but the distribution trend of REEs from La to Lu in each fraction was followed in the same rule. In the case of slag and fly ash generated from coal or coal gangue, distribution of REEs from La to Lu in each fraction showed the different trend between fly ash and slag. This was due to the fly ash exposed in flue gas system was much longer than the time for slag formation.
  • 加载中
    1. [1]

      BLISSETT R S, SMALLEY N, ROWSON N A. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content[J]. Fuel, 2014,119(1):236-239.

    2. [2]

      BAUER D, DIAMOND D, LI J. U. S. Department of energy critical materials strategy[R]. United States: Office of Scientific & Technical Information Technical Reports, 2010.

    3. [3]

      HUMPHRIES M. Rare earth elements: The global supply chain[R]. Washington, DC: CRS Report for Congress, 2013.

    4. [4]

      COMMISSION E. Report on critical raw materials for The EU[R]. Brussel, Belgium: Report of the Ad hoc Working Group on Defining Critical Raw Material, 2014.

    5. [5]

      LIN R H, HOWARD B H, ROTH E A, BANK T L, GRANITE E J, SOONG Y. Enrichment of rare earth elements from coal and coal by-products by physical separations[J]. Fuel, 2017,200:506-520.

    6. [6]

      PARK D M, BREWER A, REED D W, HAGEMAN P L, LAMMERS L N, JIAO Y Q. Recovery of rare earth elements from low-grade feedstock leachates using engineered bacteria[J]. Environ Sci Technol, 2017,51(22):13471-13480.

    7. [7]

      LIANG Y, LIU Y X, LIN R D, GUO D D, LIAO C f. Leaching of rare earth elements from waste lamp phosphor mixtures by reduced alkali fusion followed by acid leaching[J]. Hydrometallurgy, 2016,163:99-103.

    8. [8]

      DAI S F, FINKELMAN R B. Coal as a promising source of critical elements: Progress and future prospects[J]. Int J Coal Geol, 2017,94:67-93.

    9. [9]

      FOLGUERAS M B, ALONSO M, FERNáNDEZ F J. Coal and sewage sludge ashes as sources of rare earth elements[J]. Fuel, 2017,192:128-139.

    10. [10]

      MIAO Xiao-peng, TIAN Ya-jun, XU De-ping, CAO Jian-fei. Extraction of rare earth elements from fly ash and industrial prospects[J]. Chin Rare Earths, 2018,39(3):124-131.

    11. [11]

      HUANG Wen-hui, JIU Bo, LI Yuan. Distribution characteristics of rare earth elements in coal and its prospects on development and exploitation[J]. J China Coal Soc, 2019,44(1):287-294.

    12. [12]

      ESKENAZY G M. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria[J]. Int J Coal Geol, 1987,7(3):301-314.

    13. [13]

      HU J, ZHENG B S, FINKELMAN R B, WANG B B, WANG M S, LI S H, WU D S. Concentration and distribution of sixty-one elements in coals from DPR Korea[J]. Fuel, 2006,85(5):679-688.

    14. [14]

      PAZAND K. Rare earth element geochemistry of coals from the Mazino Coal Mine, Tabas Coalfield, Iran[J]. Arab J Geosci, 2015,8(12):10859-10869.

    15. [15]

      WANG W F, YONG Q, SANG S X, ZHU Y M, WANG C Y, WEISS D J. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China[J]. Int J Coal Geol, 2008,76(4):309-317.

    16. [16]

      DAI S F, JIANG Y F, WARD C R, LANDING G U, SEREDIN V V, LIU H D, ZHOU D, WANG X B. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield[J]. Int J Coal Geol, 2012,98(7):10-40.

    17. [17]

      LI Huan-tong, CHEN Fei, ZOU Xiao-yan, ZUO Xiao-feng, ZHANG Wei-guo, MO Jia-feng, WANG Nan. Geochemistry characteristics of rare earth elements in the permian longtan formation coals from south central Hu'nan province[J]. Chin Rare Earths, 2019,40(2):28-34.

    18. [18]

      ZHENG L G, LIU G J, CHOU C L, QI C C, YING Z. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China[J]. J Asian Earth Sci, 2008,31(2):167-176.

    19. [19]

      ZOU Jian-hua, LIU Dong, TIAN He-ming, LIU Feng, LI Tian, YANG Hong-yong. Geochemistry of trace and rare earth elements in the late paleozoic coal from Adaohai Mine, Inner Mongolia[J]. J China Coal Soc, 2013,38(6):1012-1018.

    20. [20]

      ZHANG P P, ZHEN H, JIA J M, WEI C D, LIU Q Q, WANG X Q, JIAN Z, LI F F, MIAO S D. Occurrence and distribution of gallium, scandium, and rare earth elements in coal gangue collected from Junggar Basin, China[J]. Int J Coal Prep Util, 2017,39(7):389-402.

    21. [21]

      KOLKER A, SCOTT C, HOWER J C, VAZQUEZ J A, LOPANO C L, DAI S F. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe[J]. Int J Coal Geol, 2017,184:1-10.

    22. [22]

      LIN R H, STUCKMAN M L, HOWARD B H, BNAK T L, ROTH E A, MACALA M K, LOPANO C, SOONG Y, GRANITE E J. Application of sequential extraction and hydrothermal treatment for characterization and enrichment of rare earth elements from coal fly ash[J]. Fuel, 2018,232:124-133.

    23. [23]

      STUCKMAN M Y, LOPANO C L, GRANITE E J. Distribution and speciation of rare earth elements in coal combustion by-products via synchrotron microscopy and spectroscopy[J]. Int J Coal Geol, 2018,195:125-138.

    24. [24]

      PAN J H, ZHOU C C, TANG M C, CAO S S, LIU C, ZHANG N N, WEN M Z, LUO Y L, HU T T, JI W S. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure[J]. Fuel, 2019,237(1):555-565.

    25. [25]

      HOWER J C, QIAN D L, BRIOT N J, HENKE K R, HOOD M M, TAGGART R K, HEILEEN H K. Rare earth element associations in the Kentucky State University stoker ash[J]. Int J Coal Geol, 2018,189:75-82.

    26. [26]

      DAI S F, ZHAO L, HOWER J C, JOHNSTON M N, SONG W J, WANG P P, ZHANG S F. Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar Power Plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements[J]. Energy Fuels, 2014,28(2):1502-1514.

    27. [27]

      MONTROSS S N, VERBA C A, CHAN H L, LOPANO C. Advanced characterization of rare earth element minerals in coal utilization byproducts using multimodal image analysis[J]. Int J Coal Geol, 2018,195:362-372.

    28. [28]

      RILEY K W, FRENCH D H, FARRELL O P, WOOD R A, HUGGINS F E. Modes of occurrence of trace and minor elements in some Australian coals[J]. Int J Coal Geol, 2012,94:214-224.

    29. [29]

      PAN J H, ZHOU C C, LIU C, TANG M C, ZHANG N N. Modes of occurrence of rare earth elements in coal fly ash: A case study[J]. Energy Fuels, 2018,32(9):9738-9743.

    30. [30]

      WU Guo-qiang, WANG Tao, ZHANG Yong-sheng, WANG Jia-wei, PAN Wei-ping. Study on the enrichment of rare earth elements between coals and their by-products at coal-fired power plants[J]. Proc CSEE, 2020,40(6):1963-1971.

    31. [31]

      SEREDIN V V. A new method for primary evaluation of the outlook for rare earth element ores[J]. Geol Ore Deposit, 2010,52(5):428-433.

    32. [32]

      DAI Shi-feng, REN De-yi, LI Sheng-sheng. Occurrence and sequential chemical extraction of rare earth element in coals and seam roofs[J]. J China Univ Min Technol, 2002,31(5):349-353.

    33. [33]

      ESKENAZY G M. Aspects of the geochemistry of rare earth elements in coal: an experimental approach[J]. Int J Coal Geol, 1999,38(3/4):285-295.

    34. [34]

      KOLKER A, SCOTT C, HOWER J C, VAZQUEZ J A, LOPANO C L. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe[J]. Int J Coal Geol, 2017,184:1-10.

    35. [35]

      USHAKOV S, HELEAN K, NAVROTSKY A, BOATNER L. Thermochemistry of rare earth orthophosphates[J]. J Phys Chem, 2001,16:2623-2633.

  • 加载中
    1. [1]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    2. [2]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Siyao Zhan Yajiao Wang Zhihuan Cai Ayizhada Maimaitiyumier Tilan Duan Xiangfeng Wei Qi Wang Jiehua Liu Xianghua Kong . Exploration of the Chemical Elements across Time and Space. University Chemistry, 2024, 39(9): 5-10. doi: 10.12461/PKU.DXHX202403071

    5. [5]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    13. [13]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    14. [14]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Yan Li Fei Ding Jing Wang Jing Nan Yijun Li Xiaohang Qiu . Give a Man a Fish, and Teach a Man to Fish: Self-Designed Instrumental Analysis Experiments and Integration of Ideological and Political Elements. University Chemistry, 2024, 39(2): 208-213. doi: 10.3866/PKU.DXHX202310097

    19. [19]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    20. [20]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

Metrics
  • PDF Downloads(6)
  • Abstract views(1447)
  • HTML views(396)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return