Citation: XIAO Xiang, FANG Ping, HUANG Jian-hang, TANG Zi-jun, CHEN Xiong-bo, WU Hai-wen, CEN Chao-ping, TANG Zhi-xiong. Effect of CO2 content on NO reduction during sewage sludge reburning[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 233-241. shu

Effect of CO2 content on NO reduction during sewage sludge reburning

  • Corresponding author: FANG Ping, fangping@scies.org
  • Received Date: 29 October 2018
    Revised Date: 14 December 2018

    Fund Project: the Pearl River S & T Nova Program of Guangzhou 201610010150The project was supported by the National Natural Science Foundation of China(NSFC-51778264), the Pearl River S & T Nova Program of Guangzhou (201610010150), the Youth Top-Notch Talent Special Support Program of Guangdong Province (2016TQ03Z576), the Project of Science and Technology Program of Guangdong Province(2017B020237002, 2018B020208002) and the Central-Level Nonprofit Scientific Institutes for Basic R & D Operations (PM-zx703-201803-077)the Youth Top-Notch Talent Special Support Program of Guangdong Province 2016TQ03Z576the National Natural Science Foundation of China NSFC-51778264the Project of Science and Technology Program of Guangdong Province 2018B020208002the Central-Level Nonprofit Scientific Institutes for Basic R & D Operations PM-zx703-201803-077the Project of Science and Technology Program of Guangdong Province 2017B020237002

Figures(11)

  • The effect of CO2 content(volume fraction 0-35%) on the reducing gas release characteristics from sewage sludge re-burning and the dynamic properties of NO reduction by sewage sludge and char were investigated in a simulated experimental platform of cement pre-calciner. The experimental results show that the reducing gas release from sewage sludge combustion are mainly HCN, NH3, CH4 and CO. With the increase of CO2 content from 0 to 25%, the release of HCN, NH3 and CH4 slowly decreased due to the enhancing effect of sludge gasification by CO2, while the release of CO increased significantly, eventually promoting the NO reduction rate from 51% to 61%. As continually increasing CO2 content to 35%, the local thermal instability was enhanced due to the radiation absorption of CO2, and the weakening of gasification resulted in the decrease of CO release. Moreover, HCN release decreased significantly, while NH3 release did not change much, CH4 release increased to a certain extent, and the combined effect makes the NO reduction rate gradually decreased to 55%. The results show that sludge re-burning can efficiently reduce NO in flue gas. It is also found that the homogeneous and heterogeneous reduction of NO are concurrence during sludge re-burning, while the experimental studies revealed that the NO reduction rate over the sludge char was only 18%, it implied that sludge denitration is dominated by gas-gas homogeneous reduction.
  • 加载中
    1. [1]

      NIU Xin, XIAO Jun. Nitrogen transformation in chemical looping combustion of sewage sludge[J]. J Fuel Chem Technol, 2017,45(4):505-512. doi: 10.3969/j.issn.0253-2409.2017.04.016 

    2. [2]

      ABUSOGLU A, OZAHI E, KUTLAR A I, AL-JAF H. Life cycle assessment (LCA) of digested sewage sludge incineration for heat and power production[J]. J Clean Prod, 2017,142(4):1684-1692.  

    3. [3]

      JIN R, ZHAN J Y, LIU G R, ZHAO Y Y, ZHENG M H, YANG L L, WANG M. Profiles of polychlorinated biphenyls (PCBs) in cement kilns co-processing solid waste[J]. Chemosphere, 2017,174:165-172. doi: 10.1016/j.chemosphere.2017.01.115

    4. [4]

      DENG Fei-fei, MAO Zhi-wei, CHENG Qun, LIAO Xiao-yin, LIAO Yu-yun, WANG Meng-yu. The analysis of NOx emission reduction in practical engineering through the co-combustion of sludge in cement kiln[J]. China Cement, 2016(7):80-83. doi: 10.3969/j.issn.1671-8321.2016.07.015

    5. [5]

      LV D, ZHU T L, LIU R W, LV Q Z, SUN Y, WANG H M, LIU Y, ZHANG F. Effects of co-processing sewage sludge in cement kiln on NOx, NH3 and PAHs emissions[J]. Chemosphere, 2016,159:595-601. doi: 10.1016/j.chemosphere.2016.06.062

    6. [6]

      FANG P, TANG Z J, HUANG J H, CEN C P, TANG Z X, CHEN X B. Using sewage sludge as a denitration agent and secondary fuel in a cement plant:A case study[J]. Fuel Process Technol, 2015,137:1-7. doi: 10.1016/j.fuproc.2015.03.014

    7. [7]

      LIAO Yan-fen, MA Xiao-qian. Combustion behavier and kinetic characteristic of a city sewage sludge[J]. J Fuel Chem Technol, 2009,37(3):296-301. doi: 10.3969/j.issn.0253-2409.2009.03.008 

    8. [8]

      CHEN J B, MU L, JIANG B, YIN H C, SONG X G, LI A M. TG/DSC-FTIR and Py-GC investigation on pyrolysis characteristics of petrochemical wastewater sludge[J]. Bioresour Technol, 2015,192:1-10. doi: 10.1016/j.biortech.2015.05.031

    9. [9]

      HU Yi, LI Pei-sheng, YU Liang-ying. Evolution of carbon functionalities in sewage sludge and coal during their co-combustion[J]. Eng J Wuhan Univ, 2013,46(5):649-653.  

    10. [10]

      LIU H, ZHANG Q, HU H Y, LIU P, HU X W, LI A J, YAO H. Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis[J]. Proc Combust Inst, 2015,35(3):2759-2766. doi: 10.1016/j.proci.2014.06.034

    11. [11]

      DUAN Chun-lei. Structural characteristics of low and medium grade coal and formation mechanism of methane and ammonia during pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2007.

    12. [12]

      LI X P, ZHANG S H, YANG W, LIU Y, YANG H P, CHEN H P. Evolution of NOx precursors during rapid pyrolysis of coals in cO2 atmospheres[J]. Energy Fuels, 2015,29(11):7474-7482. doi: 10.1021/acs.energyfuels.5b01509

    13. [13]

      TIAN Y, ZHANG J, ZUO W, CHEN L, CUI Y N, TAN T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge[J]. Environ Sci Technol, 2013,47(7):3498-3505. doi: 10.1021/es304248j

    14. [14]

      TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge[J]. Fuel, 2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4

    15. [15]

      LIU F S, GUO H S, SMALLWOOD G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames[J]. Combust Flame, 2003,133(4):495-497. doi: 10.1016/S0010-2180(03)00019-1

    16. [16]

      MENG De-run, ZHOU Jun-hu, ZHAO Xiang, ZHAO Xiao-hui, LIU Yan, YANG Wei-juan, CEN Ke-fa. Research on reaction mechanism of nitrogen in O2/CO2[J]. Acta Sci Circumstantiae, 2005,25(8):1011-1014. doi: 10.3321/j.issn:0253-2468.2005.08.003

    17. [17]

      HU Y, NAITO S, KOBAYASHI N, HASATANI M. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases[J]. Fuel, 2000,79(15):1925-1932. doi: 10.1016/S0016-2361(00)00047-8

    18. [18]

      BAI Zong-qing, CHEN Hao-kai, LI Wen, LI Bao-qing. Study on the thermal performance of metallurgical coke under methane ba TG-MS[J]. J Fuel Chem Technol, 2005,33(4):426-430. doi: 10.3969/j.issn.0253-2409.2005.04.009 

    19. [19]

      LI C Z, TAN L L. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis[J]. Fuel, 2000,79(15):1899-1906. doi: 10.1016/S0016-2361(00)00008-9

    20. [20]

      HIDEO H, TOSHIMASA H. NOx and N2O Emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas:Macroscopic characteristics of their formation and reduction[J]. Energy Fuels, 1998,12(1):102-108.  

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    11. [11]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    15. [15]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    16. [16]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    17. [17]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    18. [18]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(3)
  • Abstract views(648)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return