Citation: Yuanbin Guo, Kun Li. Research Progress of Aptamers in Cancer Diagnosis[J]. Chemistry, ;2021, 84(1): 40-46. shu

Research Progress of Aptamers in Cancer Diagnosis

  • Corresponding author: Kun Li, likun@ysu.edu.cn
  • Received Date: 11 July 2020
    Accepted Date: 2 September 2020

Figures(5)

  • Aptamers are short oligonucleotide molecules (ssDNA or RNA) screened from in vitro synthesized oligonucleotide libraries by exponential enrichment ligand phylogenetic technique (SELEX). Aptamers can bind to target molecules specifically by folding into specific spatial structures. Compared with antibodies, aptamers have a great deal of advantages, such as high affinity, easy modification, low cost, easy synthesis and low immunogenicity, which can be used for the research of cancer biomarkers, such as cells, proteins, tissues and growth factors. As a new method for cancer diagnosis, they have broad application prospects in molecular diagnosis. In this paper, the application of aptamers in the diagnosis of lung cancer, gastric cancer, colorectal cancer, breast cancer and prostate cancer in recent years is reviewed, and the role of aptamers as molecular probes from cell detection to serum detection is clarified.
  • 加载中
    1. [1]

    2. [2]

      Chen H, Gu Z, An H, et al. Sci. China Chem., 2018, 61(12): 1503~1552. 

    3. [3]

      Zhang G Q, Zhong L P, Yang N, et al. World J. Gastroenterol, 2019, 25(26): 3359~3369. 

    4. [4]

    5. [5]

      Mayer G. Angew. Chem. Int. Ed., 2009, 48(15): 2672~2689. 

    6. [6]

      Qian R C, Cao Y, Zhao L J, et al. Angew. Chem. Int. Ed., 2017, 56(17): 4802~4805. 

    7. [7]

      Needham R J, Sanchez-Cano C, Zhang X, et al. Angew. Chem. Int. Ed., 2017, 56(4): 1017~1020. 

    8. [8]

      Tian F, Zhou J, Fu R, et al. Food Chem., 2020, 320: 126607. 

    9. [9]

    10. [10]

      Zhao H, Xiang X, Chen M, et al. Toxins (Basel), 2019, 11(2).

    11. [11]

      Ni X, Castanares M, Mukherjee A, et al. Curr. Med. Chem., 2011, 18(27): 4206~4214. 

    12. [12]

      Szostak A D E J W. Nature, 1990, 346: 818~822. 

    13. [13]

      Wang J, Gao T, Luo Y, et al. J. Mol. Evol., 2019, 87(2-3): 72~82. 

    14. [14]

      Lee K H, Jeong S, Yang E G, et al. Bioorg. Med. Chem., 2007, 15(24): 7545~7552. 

    15. [15]

      Mi J, Ray P, Liu J, et al. Mol. Ther. Nucl. Acids, 2016, 5: e315.

    16. [16]

      Zhong W, Pu Y, Tan W, et al. Anal. Chem., 2019, 91(13): 8289~8297. 

    17. [17]

      Fraser L A, Kinghorn A B, Dirkzwager R M, et al. Biosens. Bioelectron., 2018, 100: 591~596. 

    18. [18]

      Bahreyni A, Ramezani M, Alibolandi M, et al. Anal. Biochem., 2019, 575: 1~9. 

    19. [19]

      Li W, Wang S, Zhou L, et al. Talanta, 2019, 199: 634~642. 

    20. [20]

      Ma Q, Qian W, Tao W, et al. Drug Des. Devel. Ther., 2019, 13: 4021~4033. 

    21. [21]

    22. [22]

    23. [23]

      Spiro S G, Silvestri G A. Am. J. Respir Crit. Care Med., 2005, 172(5): 523~529. 

    24. [24]

      Wang H, Zhang Y, Yang H, et al. Mol. Ther. Nucl. Acids, 2018, 10: 187~198. 

    25. [25]

      Wang H, Qin M, Liu R, et al. Sci. Rep., 2019, 9(1): 18836. 

    26. [26]

      Zamay G S, Kolovskaya O S, Zamay T N, et al. Mol. Ther., 2015, 23(9): 1486~1496. 

    27. [27]

      Zhou S, Gan Y, Kong L, et al. Anal. Chim. Acta, 2020, 1120: 43~49. 

    28. [28]

      Zhao Z, Xu L, Shi X, et al. Analyst, 2009, 134(9): 1808~1814. 

    29. [29]

      Tsai Y T, Liang C H, Yu J H, et al. Mol. Ther. Nucl. Acids, 2019, 18: 991~998. 

    30. [30]

      Zamay G S, Zamay T N, Kolovskii V A, et al. Sci. Rep., 2016, 6: 34350. 

    31. [31]

      Shi H, Cui W, He X, et al. PLoS One, 2013, 8(8): e70476.

    32. [32]

      Jung Y J, Katilius E, Ostroff R M, et al. Clin. Lung Cancer, 2017, 18(2): e99~e107.

    33. [33]

      Dendup T, Richter J M, Yamaoka Y, et al. World J. Gastroenterology, 2015, 21(38): 10883~10889. 

    34. [34]

      Alshaer W, Ababneh N, Hatmal M, et al. PLoS One, 2017, 12(12): e0189558.

    35. [35]

      Qian R C, Cao Y, Long Y T. Anal. Chem., 2016, 88(17): 8640~8647. 

    36. [36]

      Ramezanpour M, Daei P, Tabarzad M, et al. Mol. Biol. Rep., 2019, 46(1): 207~215. 

    37. [37]

      Zheng Y, Zhao Y, Di Y, et al. RSC Adv., 2019, 9(2): 950~957. 

    38. [38]

      Colombo M, Raposo G, Thery C. Ann. Rev. Cell Dev. Biol., 2014, 30: 255~289. 

    39. [39]

      Huang R, He L, Li S, et al. Nanoscale, 2020, 12(4): 2445~2451. 

    40. [40]

      Yatabe J, Yatabe M S, Ishibashi K, et al. Diagn. Pathol., 2013, 8: 203~203. 

    41. [41]

      Lee S H, Park Y E, Lee J E, et al. Biosens. Bioelectron., 2020, 154: 112065. 

    42. [42]

      Maimaitiyiming Y, Yang C, Wang Y, et al. Biotechnol. Appl. Biochem., 2019, 66(3): 412~418. 

    43. [43]

      Zhao Y, Ma W, Zou S, et al. Talanta, 2019, 202: 152~158. 

    44. [44]

      Zhao Y, Xu J, Le V M, et al. Mol. Pharm., 2019, 16(11): 4696~4710. 

    45. [45]

      Li K, Qi L, Gao L, et al. RSC Adv., 2019, 9(66): 38867~38876. 

    46. [46]

      Zhou J, Duan L, Huang J, et al. Anal. Biochem., 2019, 577: 110~116. 

    47. [47]

      Bray F, Ferlay J, Soerjomataram I, et al. CA Cancer J. Clin., 2018, 68(6): 394~424. 

    48. [48]

      Chen W, Zheng R, Baade P D, et al. CA Cancer J. Clin., 2016, 66(2): 115~132. 

    49. [49]

      Wu L, Zhu L, Huang M, et al. Trends Anal. Chem., 2019, 117: 69~77. 

    50. [50]

      Li X, Zhang P, Dou L, et al. ACS Sensors, 2020, 5(8): 2359~2366. 

    51. [51]

      Beltran-Gastelum M, Esteban-Fernandez de Avila B, Gong H, et al. ChemPhysChem, 2019, 20(23): 3177~3180. 

    52. [52]

      Borghei Y S, Hosseini M, Ganjali M R, et al. Sens. Actuat. B, 2020, 315.

    53. [53]

      Mohammadinejad A, Taghdisi S M, Es'haghi Z, et al. Eur. J. Pharm. Sci., 2019, 134: 60~68. 

    54. [54]

      Bezerra G, Córdula C, Campos D, et al. Anal. Bioanal. Chem., 2019, 411(25): 6667~6676. 

    55. [55]

      Bao J, Zhang W, Zhou W, et al. Talanta, 2020, 215: 120918. 

    56. [56]

      Zhu C, Li L, Wang Z, et al. Biosens. Bioelectron., 2020, 160.

    57. [57]

      An Y, Li R, Zhang F, et al. Anal. Chem., 2020, 92(7): 5404~5410. 

    58. [58]

      Souza A G, Marangoni K, Fujimura P T, et al. Exp. Cell Res., 2016, 341(2): 147~156. 

    59. [59]

      Campos-Fernandez E, Barcelos L S, Souza A G, et al. ACS Omega, 2020, 5(7): 3533~3541. 

    60. [60]

      Ptacek J, Zhang D, Qiu L, et al. Nucl. Acids Res., 2020, DOI: 10.1093/nar/gkaa494.

    61. [61]

      Kim M, Kim K, Lee J H. Microchem. J., 2020, 155: 104763. 

    62. [62]

      Ibau C, Md Arshad M K, Gopinath S C B, et al. Biosens. Bioelectron., 2019, 136: 118~127. 

  • 加载中
    1. [1]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    2. [2]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    3. [3]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    4. [4]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    7. [7]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    8. [8]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    9. [9]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    17. [17]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    19. [19]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    20. [20]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

Metrics
  • PDF Downloads(30)
  • Abstract views(1940)
  • HTML views(584)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return