Citation: QIU Ze-gang, LIU Wei-wei, LI Zhi-qin. Conversion of 4-ethylphenol to light aromatics on the Cr2O3/Al2O3 modified by phosphoric acid[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 993-1003. shu

Conversion of 4-ethylphenol to light aromatics on the Cr2O3/Al2O3 modified by phosphoric acid

  • Corresponding author: LI Zhi-qin, lizhiqin@xsyu.edu.cn
  • Received Date: 17 March 2020
    Revised Date: 12 June 2020

    Fund Project: the Natural Science Foundation of China 21606177the Natural Science Foundation of China 21878243Natural Science Basic Research Program of Shaanxi 2019JM-085the Natural Science Foundation of China 21908176The project was supported by the Natural Science Foundation of China (21878243, 21606177, 21908176) and Natural Science Basic Research Program of Shaanxi (2019JM-085)

Figures(11)

  • With the goal of conversion of alkylphenols to light aromatics (benzene and toluene), Cr2O3/Al2O3 catalysts were prepared and their hydrogenation performance was investigated using 4-ethylphenol as a model compound. With the increase of LHSV, H2/oil, reaction pressure and temperature, the dealkylation rate, the total selectivity of aromatics, and the selectivity of light aromatics first rose and then dropped. The conversion of 4-ethylphenol was obviously influenced by the reaction temperature. Cr2O3/Al2O3 was modified with different concentrations of phosphoric acid. As the increase of the amount of phosphoric acid, the general amount of weak and medium acids on the catalyst increased, and the strength of acid was first enhanced and then weakened. The amount of weak acid increased significantly under a high value of the amount of phosphoric acid. Compared with the unmodified catalyst, the conversion of 4-ethylphenol on the catalysts modified by 8% phosphoric acid is higher than 99.5%, while the dealkylation rate of 4-ethylphenol increased by 9.4%, reaching to 74.4%, and the selectivity to light aromatics (benzene and toluene) increased by 4.0%, reaching to 57.0%. Conversion of 4-ethylphenol to light aromatics was achieved in high selectivity. Furthermore, the total selectivity of aromatics was as high as 80.4%, which meant that most of the aromatic rings was not broken. The path of hydrogenation reaction of 4-ethylphenol on Cr2O3/Al2O3 was proposed and the reaction mechanism was discussed.
  • 加载中
    1. [1]

      ZHAO N, LIU D, DU H, WEN F, SHI N. Investigation on component separation and structure characterization of medium-low temperature coal tar[J]. Appl Sci, 2019,9(20)4335. doi: 10.3390/app9204335

    2. [2]

      ZANG Sheng-juan, GAO Ya-nan, CHEN Gang, JI Peng-jun, SHI Xin, ZHAO Jing, ZHAO Li-xin, WANG Yan-hong. Research progress on isolation of phenolic compounds from coal tar and its composition and structure identification[J]. Chem Ind Eng Prog, 2018,37(7):139-147.  

    3. [3]

      YI L, FENG J, LI W, LUO Z. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents[J]. ACS Sustainable Chem Eng, 2019,7(8):7777-7783. doi: 10.1021/acssuschemeng.8b06734

    4. [4]

      SUN M, ZHANG D, YAO Q, LIU Y, SU X, JIA Charles Q, HAO Q, MA X. Separation and composition analysis of GC/MS analyzable and unanalyzable parts from coal tar[J]. Energy Fuels, 2018,32(7):7404-7411. doi: 10.1021/acs.energyfuels.8b01054

    5. [5]

      LI Jun-fang, MAO Xue-feng, HU Fa-ting. Composition of phenolic compounds in phenol oil distillate of medium and low temperature coal tar[J]. Coal Convers, 2019,42(2):32-38.  

    6. [6]

      SHI Jun-ge, WU Mei. Application of gas chromatography-oxygen selective flame ion detector in analytical research of phenolic compounds in coal tar[J]. Pet Process Petrochem, 2019,50(7):97-102.  

    7. [7]

      WANG Ru-cheng, SUN Ming, LIU Qiao-xia, MA Yan-xing, FENG Guang, XU Long, MA Xiao-xun. Extraction and GC/MS analysis of phenolic compounds in middle and low temperature coal tars in Northern Shaanxi[J]. J China Coal Soc, 2011,36(4):664-669.  

    8. [8]

      SHI L, ZHANG Z, QIU Z, GUO F, ZHANG W, ZHAO L. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar[J]. J Fuel Chem Technol, 2015,43(1):74-80.  

    9. [9]

      HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO Liang-fu. Effect of different P modification methods on the performance of Mo-Co/γ-Al2O3 coal tar hydrodesulfurization[J]. Pet Process Petrochem, 2016,47(9):67-74.  

    10. [10]

      FENG J, YANG Z, HSE C, SU Q, WANG K, JING J, XU J. In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading[J]. Renewable Energy, 2017,105:140-148. doi: 10.1016/j.renene.2016.12.054

    11. [11]

      DE SOUZA P M, RABELO-NETO R C, BORGES L E P. Hydrodeoxygenation of phenol over Pd catalysts[J]. ACS Catal, 2017,7(3):2058-2073. doi: 10.1021/acscatal.6b02022

    12. [12]

      LUO Z, ZHENG Z, WANG Y, SUN G, JIANG H, ZHAO C. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chem, 2016,18(21):5845-5858. doi: 10.1039/C6GC01971D

    13. [13]

      LU Jin-zhi, WEI Xue-mei, MA Zhan-wei, HU Bin. Structure-activity relationship of catalyst morphology and phenolic compound hydrogenation activity[J]. Chem Ind Eng Pro, 2020,39(3):1000-1011.  

    14. [14]

      SUN Z, FRIDRICH B, DE SANTI A, ELANGOVAN S, BARTA K. Bright side of lignin depolymerization:Toward new platform chemicals[J]. Chem Rev, 2018,118(2):614-678. doi: 10.1021/acs.chemrev.7b00588

    15. [15]

      JI Na, SONG Jing-jing, DIAO Xin-yong, SONG Chun-feng, LIU Qing-ling, ZHENG Ming-yuan. Sulfide-catalyzed conversion of lignin and its model compounds to produce high value-added chemicals[J]. Prog Chem, 2017,29(5):113-128.  

    16. [16]

      SAIDI M, SAMIMI F, KARIMIPOURFARD D, NIMMANWUDIPONG T, GATES B C, RAHIMPOUR M R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation[J]. Energy Environ Sci, 2014,7(1):103-129. doi: 10.1039/C3EE43081B

    17. [17]

      QIU Ze-gang, YIN Chan-juan, Li Zhi-qin, FENG Yue-kuo. Research progress on phenol hydrodeoxygenation catalysts[J]. Chem Ind Eng Prog, 2019,38(8):3658-3669.  

    18. [18]

      KATADA N, KAWAGUCHI Y, TAKEDA K, MATSUOKA T. Dealkylation of alkyl polycyclic aromatic hydrocarbon over silica monolayer solid acid catalyst[J]. Appl Catal A:Gen, 2017,530:93-101. doi: 10.1016/j.apcata.2016.11.018

    19. [19]

      AL-KHATTAF S S, ALI S A, AITANI A M. Fixed-bed alkyl-aromatic conversion process: US, 10173204[P]. 2019-1-8.

    20. [20]

      SHIN J, OH Y, CHOI Y, LEE J, LEE J K. Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons[J]. Appl Catal A:Gen, 2017,547:12-21. doi: 10.1016/j.apcata.2017.08.019

    21. [21]

      LIU Chen-guang, LIU Huan, YIN Chang-long. Preparation of Ni-W catalyst with high metal content and competitive catalytic performance[J]. Pet Process Petrochem, 2014,45(11):23-28.  

    22. [22]

      SHEN Qun-bing. Hydrogenation and dealkylation of heavy aromatics to BTX on molecular sieve catalysts supporting metal oxides and precious metals[D]. Shanghai: East China University of Science and Technology, 2010.

    23. [23]

      WANG Shi-wen, LIAO Qiao-li, QIN Yong-ning. Research on new C9-C10 aromatic dealkylation catalyst[J]. Petrochem Ind, 1995(12):849-851.  

    24. [24]

      PAN Zhi-ying. Study on the Catalytic Performance of Supported HMCM-56 Catalyst for Hydrodealkylation of Heavy Aromatic Hydrocarbons[D]. Shanghai: East China University of Science and Technology, 2011.

    25. [25]

      VERBOEKEND D, LIAO Y, SCHUTYSER W, SELS B F. Alkylphenols to phenol and olefins by zeolite catalysis:A pathway to valorize raw and fossilized lignocellulose[J]. Green Chem, 2016,18(1):297-306.  

    26. [26]

      LESMANA D, WU H S. Cu/ZnO/Al2O3/Cr2O3/CeO2 catalyst for hydrogen production by oxidative methanol reforming via washcoat catalyst preparation in microchannel reactor[J]. Bull Chem React Eng Catal, 2017,12(3):384-392. doi: 10.9767/bcrec.12.3.966.384-392

    27. [27]

      ZHANG M, ZHAO R, LING Y, WANG R, ZHOU Q. Preparation of Cr2O3/Al2O3 bipolar oxides as hydrogen permeation barriers by selective oxide removal on SS and atomic layer deposition[J]. Int J Hydrogen Energy, 2019,44(23):12277-12287. doi: 10.1016/j.ijhydene.2019.03.086

    28. [28]

      BAII L, CARLTON JR D D, SCHUG K A. Complex mixture quantification without calibration using gas chromatography and a comprehensive carbon reactor in conjunction with flame ionization detection[J]. J Sep Sci, 2018,41(21):4031-4037. doi: 10.1002/jssc.201800383

    29. [29]

      MENG S, CHANG S, CHEN S. Synergistic effect of photocatalyst CdS and thermalcatalyst Cr2O3-Al2O3 for selective oxidation of aromatic alcohols into corresponding aldehydes[J]. ACS Appl Mater Interfaces, 2019.

    30. [30]

      XING R, FRIDMAN V, SEVERANCE M. Investigating the CrOx/Al2O3 dehydrogenation catalyst model: I. identification and stability evaluation of the Cr species on the fresh and equilibrated catalysts[J]. Appl Catal A: Gen. 2016, 523: 39-53.

    31. [31]

      DONG J, WANG J, WANG J, YANG M, LI W. Enhanced thermal stability of palladium oxidation catalysts using phosphate-modified alumina supports[J]. Catal Sci Technol, 2017,7(21):5038-5048. doi: 10.1039/C7CY01534H

    32. [32]

      ZHAO Y, CHEN D K, LIU J P, HE D D, CAO X H, HAN C Y, LU J C, LUO Y M. Tuning the metal-support interaction on chromium-based catalysts for catalytically eliminate methyl mercaptan:Anchored active chromium species through surface hydroxyl groups[J]. Chem Eng J, 2020,389124384. doi: 10.1016/j.cej.2020.124384

    33. [33]

      HU Nai-fang, CUI Hai-tao, QIU Ze-gang, ZHAO Liang-fu, MENG Xin-xin, ZHAO Zheng-quan, AO Guang-yu. Effects of Different P. Loadings on the hydrodesulfurization performance of Co-Mo/γ-Al2O3 coal tar[J]. J Fuel Chem Technol, 2016,44(6):754-753.  

    34. [34]

      HERRERA-GOMEZ A, CABRERA-GERMAN D, DUTOI A D. Intensity modulation of the Shirley background of the Cr3p spectra with photon energies around the Cr2p edge[J]. Surf Interface Anal, 2018,50(2):246-252.

    35. [35]

      PARK J H, YEO S, KANG T J, I HEO, LEE K Y, CHANG T S. Enhanced stability of Co catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4[J]. Fuel, 2018,212:77-87. doi: 10.1016/j.fuel.2017.09.090

    36. [36]

    37. [37]

      ČEJKA J, WICHTERLOVÁ B. Acid-catalyzed synthesis of mono-and dialkyl benzenes over zeolites:Active sites, zeolite topology, and reaction mechanisms[J]. Catal Rev, 2002,44(3):375-421. doi: 10.1081/CR-120005741

    38. [38]

      ROMERO Y, RICHARD F, BRUNET S. Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts:Promoting effect and reaction mechanism[J]. Appl Catal B:Environ, 2010,98(3/4):213-223.  

  • 加载中
    1. [1]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    2. [2]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    3. [3]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    12. [12]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    17. [17]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    18. [18]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    19. [19]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(3)
  • Abstract views(1294)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return