Citation: LI Zhen-hua, QU Jiang-lei, WANG Wei-han, WANG Bao-wei, MA Xin-bin. Effect of CO2 in syngas on methanation performance of Mo-based catalyst[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 985-992. shu

Effect of CO2 in syngas on methanation performance of Mo-based catalyst

Figures(7)

  • The methanation of synthesis gas is the key process of coal to natural gas. Considering the existence of CO2 in the synthesis gas, it is important to investigate the influence of CO2 on the sulfur-resistant methanation. In this paper, the effect of CO2 on methanation activity of Mo-based catalysts was investigated at the reaction temperature of 550℃ and the gas space velocity of 5000h-1 with the syngas containing 1.2% H2S (volume ratio). The results show that the promoter Co and the cerium-aluminum composite support can improve the stability of the catalyst and reduce the deactivation. The CO2 is proved to promote the reverse water gas shift reaction, which would inhibit the activity of MoO3/Al2O3 catalyst more heavily than MoO3-CoO/CeO2-Al2O3 catalyst. When the CO2 adding to the inlet gas is less than 10% for 20h, the catalyst activity could be restored to its original activity after stopping the addition of CO2. However, as the added CO2 in inlet gas is over 10%, more H2O will be generated through reverse water gas shift reaction to damage the catalyst structure and decrease the active component, resulting in an irreversible loss of catalyst activity.
  • 加载中
    1. [1]

      ZHANG Dong-ke. Energy options in sustainable development[J]. J Fuel Chem Technol, 2005,33(4):399-406.  

    2. [2]

      HU Liang-hua, FENG Zai-nan, YAO Ze-long, LIU Wei, SHEN Tu-liang, WANG Jun-feng. Aspen Plus simulation of coke oven gas methanation process[J]. Nat Gas Ind, 2013,38(3):53-57.  

    3. [3]

      SABATIER P, SENDERENS J B. New synthesis of methane[J]. CR Acad Sci Paris, 1902,134:514-516.

    4. [4]

      SABATIER P, SENDERENS J B. Hydrogenation of CO over nickel to produce methane[J]. J Soc Chim Ind, 1902,21:504-506.

    5. [5]

      HUANG Guo-bao, WANG Zhi-qing, LI Qing-feng, HUANG Jie-jie, FANG Yi-tian. Syngas methanation over nickel catalyst in liquid-phase[J]. J Fuel Chem Technol, 2014,42(8):952-957.  

    6. [6]

      MINCHENER A J. Coal gasification for advanced power generation[J]. Fuel, 2005,84(17):2222-2235. doi: 10.1016/j.fuel.2005.08.035

    7. [7]

      SCHILDHAUER T J, SEEMANN M C, BIOLLAZ S M A. Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas[J]. Ind Eng Chem Res, 2010,49(15):7034-7038. doi: 10.1021/ie100510m

    8. [8]

      WU Qie-yi, QIN Tao, YAN Zhi.Method for synthesizing methane by using coke-oven gas:CN, 101391935 A[P].2009-03-25.

    9. [9]

      HUANG Ming-jin, GUO Cheng-yu, YIN Ming-da.Methanation process for raw gas of synthetic ammonia:CN, 1313241 A[P].2001-09-19.

    10. [10]

      GALLETTI C, SPECCHIAS , SARACCO G, SPECCHIA V. CO-selective methanation over Ru/γ-Al2O3 catalysts in H2-rich gas for PEMFC applications[J]. Chem Eng Sci, 2010,65(1):590-596. doi: 10.1016/j.ces.2009.06.052

    11. [11]

      XU Chao, WANG Xing-jun, HU Xian-hui, CHEN Xue-li, WANG Fu-chen. Study on the syngas methanation of nickel-based catalyst[J]. J Fuel Chem Technol, 2012,40(2):216-220.  

    12. [12]

      GAO J J, LIU Q, GU F N, LIU B, ZHONG Z Y, SU F B. Recent advances in methanation catalysts for the production of synthetic natural gas[J]. RSC Adv, 2015,5(29):22759-22776. doi: 10.1039/C4RA16114A

    13. [13]

      GAO Ju-zhong. Application and development of coal gasification technologies[J]. Clean Coal Technol, 2013(1):65-71.  

    14. [14]

      YUAN Yong-tian, YIN Yan-hua, ZHOU Xu, ZHOU Jun-cheng. Methanation of thoree diffenent reaction systems of carbon oxides[J]. Chem Ind Eng Process, 2014,33(1):173-180.

    15. [15]

      YI Li-li, MA Lei, LU Chun-shan, LI Xiao-nian. Study on the catalytic hydrogenation of carbon dioxide for methanation[J]. Chem Prod Technol, 2004,11(5):33-35.

    16. [16]

      JIMÉNEZ V, SANCHEZ P, PANAGIOTOPOULOU P, VALVERDE J, ROMERO A. Methanation of CO, CO2 and selective methanation of CO, in mixtures of CO and CO2, over ruthenium carbon nanofibers catalysts[J]. Appl Catal A:Gen, 2010,390(1/2):35-44.

    17. [17]

      PANAGIOTOPOULOU P, KONDARIDES D, VERKIOS X. Selective methanation of CO over supported noble metal catalysts:Effects of the nature of the metallic phase on catalytic performance[J]. Appl Catal A:Gen, 2008,344(1/2):45-54.

    18. [18]

      ECKLE S, ANFANG H, BEHM R. What drives the selectivity for CO methanation in the methanation of CO2-rich reformate gases on supported Ru catalysts[J]. Appl Catal A:Gen, 2011,391(1):325-333.

    19. [19]

      WANG Cheng-xue, GONG Jie. Study on Ni-Mn-based catalysts for methanation of carbon dioxide[J]. Nat Gas Ind, 2011,36(1):4-15.  

    20. [20]

      WANG Er-dong, WANG Hai-yang, DING Guo-zhong, SHANG Yu-guang, LI Zhen-hua, WANG Bao-wei, MA Xin-bin, QIN Shao-dong, SUN Qi. Effect of reaction parameters on the activity of sulfur-resistant methanation catalyst[J]. Chem React Eng Technol, 2012,28(1):75-81.  

    21. [21]

      LI Z H, WANG H Y, WANG E D, LV J, SHANG Y G, DING G Z, WANG B W, MA X B, QIN S D, SU Q. The main factors controlling generation of synthetic natural gas by methanation of synthesis gas in the presence of sulphur-resistant Mo-based catalysts[J]. Kinet Catal, 2013,54(3):338-343. doi: 10.1134/S0023158413030117

    22. [22]

      WANG B W, DING G Z, SHANG Y G, LV J, WANG H Y, WANG E D, LI Z H, MA X B, QIN S D, SUN Q. Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Appl Catal A:Gen, 2012,431-432(1):144-150.

    23. [23]

      LIN C, WANG H Y, LI Z H, WANG B W, MA X B, QIN S D, SUN Q. Effect of a promoter on the methanation activity of Mo-based sulfur-resistant catalyst[J]. Front Chem Sci Eng, 2013,7(1):88-94. doi: 10.1007/s11705-013-1301-1

    24. [24]

      WANG Bao-wei, SHANG Yu-guang, DING Guo-zhong, WANG Hai-yang, WANG Er-dong, LI Zhen-hua, MA Xin-bin, QIN Shao-dong, SUN Qi. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. J Fuel Chem Technol, 2012,40(11):1390-1396.  

    25. [25]

      CUI Xiao-xi, CAO Hui-bo, MENG Fan-hui, LI Zhong. Thermodynamic analysis for methanation of syngas[J]. Nat Gas Ind, 2012,37(5):15-19.  

    26. [26]

      CHENG Hong-gang, WANG Teng-da, ZHANG Kai, NIU Yu-guang, YANG Yong-ping. Thermodynamic analysis of carbon deposition on catalyst for the production of substitute natural gas[J]. J Fuel Chem Technol, 2013,41(8):978-984.  

    27. [27]

      DOU Bo-sheng, XIE Xiao-fan, WANG Yu-jie, SHI Xin. Sulfer loss and activity of Co-Mo-K/Al2O3 water gas shift catalyst[J]. Petrochem Technol, 1990(6):387-389.

    28. [28]

      LAURENT E, DELMON B. Influence of water in the deactivation of a sulfided NiMo/γ-Al2O3 catalyst during hydrodeoxygenation[J]. J Catal, 1994,146(1):281-285. doi: 10.1016/0021-9517(94)90032-9

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    3. [3]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    4. [4]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    10. [10]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    11. [11]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    12. [12]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    15. [15]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(3468)
  • HTML views(1078)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return