Citation: BIAN Yu-qing, ZHAO Yuan-sheng, ZHANG Long-li, ZHAO Yu-sheng, YANG Chao-he. Study on the hydrogenation reaction and coking behavior in Golmud residue hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 1016-1024. shu

Study on the hydrogenation reaction and coking behavior in Golmud residue hydrogenation

  • Corresponding author: ZHANG Long-li, llzhang@upc.edu.cn
  • Received Date: 20 May 2019
    Revised Date: 25 June 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21576292)the National Natural Science Foundation of China 21576292

Figures(13)

  • The ultra-low asphaltene content of Golmud residue (asphaltene content:0.32%) was used as the hydrogenation feedstock. The effect of reaction conditions on the composition properties, colloidal stability parameters (CSP) and coke performance of the hydrogenation reaction samples was investigated. The results show that with the increase in hydrogenation temperature and reaction time, the content of asphaltene and saturated fraction increases, the content of colloid and aromatic fraction as well as the colloid stability parameter decrease, and the coke yield increases continuously. Meanwhile, as the degree of condensation of asphaltenes increases, the aromatic carbon ratio fA increases continuously, the metals and heteroatoms are continuously removed during hydrogenation, V is easier to remove than Ni, and S is easier to remove than N. On the catalyst surface is a carbon-based substance similar to the graphite with ordered structure formed, leading to the continuous reduction in pore structure parameters of the catalyst. When the reaction temperature and time are 420 ℃ and 5 h, respectively, the pore structure damage of the catalyst is the most serious, and a dominant distribution of micropore appears.
  • 加载中
    1. [1]

      WANG Hai-yan, QI Zhen-dong, YAN Jing-sen, WEI Min. The effect of ti doping in Ni2P/SBA-15 catalyst on its catalytic hydrodenitrogenation performance[J]. Acta Pet Sin(Pet Process Sect), 2015,31(6):1281-1288. doi: 10.3969/j.issn.1001-8719.2015.06.005

    2. [2]

      LI Z K, WANG G, LIU Y D, GAO J S, XU C M, LIANG Y M, WANG X Q. Study on reaction performance and competitive adsorption effect during coker gas oil catalytic cracking[J]. Fuel Process Technol, 2013,115(11):1-10.  

    3. [3]

      BU Wei-da. Characteristics and development trend of heavy oil hydrogenation technology[J]. Chem Eng Equip, 2010,3:113-115.  

    4. [4]

      LIANG Wen-jie. Heavy Oil Chemistry[M]. Shandong:Petroleum University Press, 2000:2-7.

    5. [5]

      CERQUEIRA H S, CAEIRO G, COSTA L, RAMÔA R F. Deactivation of FCC catalysts[J]. J Mol Catal A:Chem, 2008,292(1/2):1-13.  

    6. [6]

      LIU Mei, LIU Tie-bin, YUAN Sheng-hua, ZHAO De-zhi. Transformation of sulfur-containing compounds in hydrotreating of middle east atmospheric residue[J]. Acta Pet Sin(Pet Process Sect), 2016,32(2):319-325. doi: 10.3969/j.issn.1001-8719.2016.02.013

    7. [7]

      CAEIRO G, COSTA A F, CERQUEIRA H S, MAGNOUX P, LOPES J M, MATIAS P, RAMÔA R F. Nitrogen poisoning effect on the catalytic cracking of gasoil[J]. Appl Catal A:Gen, 2007,320(3):8-15.  

    8. [8]

      MAGALLAL. Theoretical Basis of Petrochemical Processing[M]. Translated by XU Yi-fang et al. Beijing: Petroleum Industry Press, 1982: 145-161.

    9. [9]

      ZHANG L L, MAO H X, ZHANG G D, YANG G G, LI L, YANG C H. Relationships between electrical conductivity variation and coking characteristics of residue during thermal reaction through online equipment[J]. Energy Fuels, 2016,30(7):5404-5410. doi: 10.1021/acs.energyfuels.6b00453

    10. [10]

      ZHANG L L, YANG G H, QUE G H. The conglomerating characteristics of asphaltenes from residue during thermal reaction[J]. Fuel, 2005,84(7):1023-1026.  

    11. [11]

      JIANG Li-jing. Study on hydrotreating kinetics and combination process of residual oil[D]. Dalian: Dalian University of Technology, 2011. 

    12. [12]

      LIANG Jing-cheng, MA Shou-tao, ZHOU Yong-li. Analysis of carbon and hydrogen content in evaluation of mixed crude oil[J]. Pet Nat Gas Chem, 2011,40(4):394-395. doi: 10.3969/j.issn.1007-3426.2011.04.017

    13. [13]

      WANG Ben, HUANG Ke-Lin, SUN Guo-song, ZHANG Xue-wang, CAO Yong-mei, ZHANG Shou-li. XRD analysis-Application in solid catalyst phase structure research[J]. Public Sci Technol, 2008(12):109-111. doi: 10.3969/j.issn.1008-1151.2008.12.049

    14. [14]

      ZHANG H Y, WANG Y, SHAO S S, XIAO R. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural[J]. Combust Flame, 2016(173):258-265.  

    15. [15]

      SUN Yu-dong. Influence of raw material composition on hydrogenation performance and catalyst properties of residual oil[D]. Shanghai: East China University of Science and Technology, 2011. 

    16. [16]

      SHI Q, XU C M, ZHAO S Q, KENG H C, ZHANG Y H, GAO W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2010,24(1):563-569.

    17. [17]

      ZHANG Hui-cheng, YAN Yong-jie, QI Bang-feng, SUN Wan-fu, ZHANG Hong-yu. Influence of residue hydrotreating on the stability of residue colloid[J]. Pet Nat Gas Chem, 2007,36(3):197-200. doi: 10.3969/j.issn.1007-3426.2007.03.007

    18. [18]

      SUN Y D, YANG C H, ZHAO H, SHAN H H, SHEN B X. Influence of asphaltene on the residue hydrotreating reaction[J]. Energy Fuels, 2010,24(9):5008-5011. doi: 10.1021/ef1005385

    19. [19]

      LIANG Wen-jie. Heavy Oil Chemistry[M]. Dongying:Petroleum University Press. 1995:64-66.

    20. [20]

      ZHAO Hui. Research on hydrogen conversion law of residue oil[D]. Qingdao: China University of Petroleum, 2009. 

    21. [21]

      YU Shuang-lin. Colloidal properties of residue hydrotreating system[D]. Qingdao: China University of Petroleum, 2010. 

    22. [22]

      QIAO Jin-shuai, ZHANG Long-li, CHEN Peng-wei, CAO Zhe-zhe, SHAN Hong-hong. Review on the influence of colloid and asphalt quality on the stability of residual oil colloid[J]. Appl Chem Ind, 2017,46(6):1180-1184. doi: 10.3969/j.issn.1671-3206.2017.06.036

    23. [23]

      ANCHEYTA J, CENTENO G, TREJO F, SPEIGHT J G. Asphaltene characterization as function of time on-stream during hydroprocessing of Maya crude[J]. Catal Today, 2005,109:162-166. doi: 10.1016/j.cattod.2005.08.004

    24. [24]

      QUE Guo-he. Petroleum Composition and Transforming Chemistry[M]. Shandong:Petroleum University Press. 2008:288-380.

    25. [25]

      WANG Lei. Research and application of residual oil hydrogenation process[J]. Contemp Chem Ind, 2005,34(3):157-158. doi: 10.3969/j.issn.1671-0460.2005.03.004

    26. [26]

      ZHANG H Y, WANG Y, SHAO S S, XIAO R. An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural[J]. Combust Flame, 2016,173:258-265. doi: 10.1016/j.combustflame.2016.08.019

    27. [27]

      LIU Yong-jun, ZOU Yu. Carbon deposition analysis of hydro-demetalization catalyst for residue oil[J]. J Huaqiao Univ(Nat Sci Ed), 2014,35(2):180-184.  

    28. [28]

      ZHANG Hui-cheng, MA Bo, LI Jing-bin, LIU Shu-qin, GENG Jing-yuan, WANG Ji-feng. Analysis of catalyst carbon deposition in residue hydrotreating[J]. Contemp Chem Ind, 2008,37(3):277-282. doi: 10.3969/j.issn.1671-0460.2008.03.016

    29. [29]

      LIN Jian-fei, HU Da-wei, YANG Qing-he, NIE Hong. Analysis of carbon deposition on surface of fixed-bed residue hydrotreating catalyst[J]. Pet Process Petrochem, 2016,47(10):1-5. doi: 10.3969/j.issn.1005-2399.2016.10.001

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    11. [11]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    12. [12]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    13. [13]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(9)
  • Abstract views(1010)
  • HTML views(148)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return