Citation: LIU Zhao-xian, GUO Ai-jun, CHEN Kun, WANG Zong-xian, CHU Jun, CHEN Jian-tao. Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(3): 366-374. shu

Changes in chemical structure and solvation of heavy oil components during thermal upgrading of a vacuum residue

  • Corresponding author: GUO Ai-jun, ajguo@upc.edu.cn
  • Received Date: 12 October 2015
    Revised Date: 8 January 2016

    Fund Project: the Application Research of Independent Innovation Foundation of Qingdao 15-9-1-77-jchthe Provincial Natural Science Foundation of Shandong ZR2014BQ030National Natural Science Foundation of China U1362101and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15002and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15009and the China National Petroleum Corporation (CNPC) Grant on Research and Development for Commercial Application of Novel Technologies in Processing Inferior Heavy Oil PRIKY15008the Fundamental Research Funds for the Central Universities 14CX02120A

Figures(6)

  • The Venezuelan vacuum residue was used as a feedstock for thermal upgrading experiments to investigate the changes in chemical structure and composition and the solvation interaction of heavy oil components in a micro-batch reactor at 410℃ with an initial pressure of nitrogen 2.0MPa. The 1H-nuclear magnetic resonance measurement was applied to analyze the reaction pathway of hydrogen atoms with different chemical shift of the heavy oil components. The average molecular structural parameters of asphaltenes and heavy resins in the oil produced by thermal upgrading of the feedstock were calculated and analyzed by the modified Brown-Lander methods. The vapor pressure osmometry was used to determine the average molecular weights of supramolecular structures formed by asphaltenes and heavy resins in toluene. The results show that both H/C atomic ratio and hydrogen donating ability of asphaltenes and heavy resins decrease with reaction time, and the conjugate degree of aromatic ring system and fA become greater clearly after 45min. The aggregation of asphaltenes rises slowly and increases sharply after 15 min, while there is a slight change of aggregation for the heavy resins during the whole reaction time, and the differences in aggregation correlation values between asphaltenes and heavy resins are increased by 1.5% at 15min, 50.8% at 25min, and 142.3% at 45min, respectively. The solvation interaction of heavy resins with asphaltenes weakens with time, and the solvation parameters decrease from 32.9% at the beginning to 29.5% at 15min, 14.1% at 25min, and 9.6% at 45min, respectively. The changes may contribute to the dropping of thermal colloidal stability of resins and the increasing of spot ratings.
  • 加载中
    1. [1]

      YAO Guo-xin. Current status and development prospects for processing of Venezuelan extra-heavy crude and Canadian oil sand bitumen[J]. Sino-Global Energy, 2012,17(1):3-22.  

    2. [2]

      LI S H, LIU C G, QUE G H, LIANG W J, ZHU Y J. Colloidal structures of three Chinese petroleum vacuum residues[J]. Fuel, 1996,75(8):1025-1029. doi: 10.1016/0016-2361(95)00315-0

    3. [3]

      ZHAO B, SHAW J M. Composition and size distribution of coherent nanostructures in Athabasca bitumen and Maya crude oil[J]. Energy Fuels, 2007,21(5):2795-2804. doi: 10.1021/ef070119u

    4. [4]

      INDO K, RATULOWSKI J, DINDORUK B, GAO J L, ZUO J L, MULLINS O C. Asphaltene nanoaggregates measured in a live crude oil by centrifugation[J]. Energy Fuels, 2009,23(9):4460-4469. doi: 10.1021/ef900369r

    5. [5]

      CHANG C L, FOGLER H S. Stabilization of asphaltenes in aliphatic solvents using alkylbenzene-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using fourier transform infrared spectroscopy and small-angle x-ray scattering techniques[J]. Langmuir, 1994,10(6):1758-1766. doi: 10.1021/la00018a023

    6. [6]

      GONZÁLEZ G, NEVES G B M, SARAIVA S M, LUCAS E F, SOUSA M D A D. Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction[J]. Energy Fuels, 2003,17(4):879-886. doi: 10.1021/ef020249x

    7. [7]

      LEÓN O, CONTRERAS E, ROGEL E, DAMBAKLI G, ESPIDEL J, ACEVEDO S. The influence of the adsorption of amphiphiles and resins in controlling asphaltene flocculation[J]. Energy Fuels, 2001,15(5):1028-1032. doi: 10.1021/ef010032n

    8. [8]

      LEÓN O, CONTRERAS E, ROGEL E, DAMBAKLI G, ACEVEDO S, CARBOGNANI L, ESPIDEL J. Adsorption of native resins on asphaltene particles: A correlation between adsorption and activity[J]. Langmuir, 2002,18(13):5106-5112. doi: 10.1021/la011394q

    9. [9]

      DANIEL M G, ANDERSEN S I. Thermodynamic characterization of asphaltene-resin interaction by microcalorimetry[J]. Langmuir, 2004,20(11):4559-4565. doi: 10.1021/la0499315

    10. [10]

      SOORGHALI F, ZOLGHADR A, AYATOLLAHI S. Effects of native and non-native resins on asphaltene deposition and the change of surface topography at different pressures: An experimental investigation[J]. Energy Fuels, 2015,29(9):5487-5494. doi: 10.1021/acs.energyfuels.5b00366

    11. [11]

      WANG Qi, GUO Lei, WANG Zong-xian, MU Bao-quan, GUO Ai-jun, LIU He. Hydrogen donor visbreaking of Venezuelan vacuum residue[J]. J Fuel Chem Technol, 2012,40(11):1317-1322. doi: 10.1016/S1872-5813(13)60001-8 

    12. [12]

      GOULD K A, WIEHE I A. Natural hydrogen donors in petroleum resids[J]. Energy Fuels, 2006,21(3):1199-1204.

    13. [13]

      WANG Z X, JI S F, LIU H, CHEN K, GUO A J. Hydrogen transfer of petroleum residue subfractions during thermal processing under hydrogen[J]. Energy Technol, 2015,3(3):259-264. doi: 10.1002/ente.201402190

    14. [14]

      GUO A J, WANG Z Q, ZHANG H J, ZHANG X J, WANG Z X. Hydrogen transfer and coking propensity of petroleum residues under thermal processing[J]. Energy Fuels, 2010,24(5):3093-3100. doi: 10.1021/ef100172r

    15. [15]

      BROWN J K, LADNER W R. A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy Ⅱ. A comparison with infra-red measurement and the conversion to carbon structure[J]. Fuel, 1960,39:87-96.

    16. [16]

      LIU He, CHEN Kun, WANG Zong-xian, GUO Ai-jun. Evaluation of relative hydrogen-donating abilities of different heavy oils during mild thermal conversion by 1H-NMR[J]. J Fuel Chem Technol, 2013,41(10):1191-1198.  

    17. [17]

      DICKIE J P, YEN T F. Macrostructures of asphaltic fractions by various instrumental methods[J]. Anal Chem, 1967,39(14):1847-1852. doi: 10.1021/ac50157a057

    18. [18]

      LI Chuan, WANG Ji-qian, SUI Li-tao, CUI Min, DENG Wen-an. Study on XPS of Venezuela heavy oil asphaltene[J]. Acta Pet Sin (Pet Proc Sect), 2013,29(3):459-463.  

    19. [19]

      WANG Zhi-qing. Research on the colloidal stability and hydrogen-transfer of vacuum residue during thermal conversion[D]. Qingdao: China University of Petroleum, 2006.

    20. [20]

      SEDGHI M, GOUAL L, WELCH W, KUBELKA J. Effect of asphaltene structure on association and aggregation using molecular dynamics[J]. J Phys Chem B, 2013,117(18):5765-5776. doi: 10.1021/jp401584u

  • 加载中
    1. [1]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    2. [2]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    3. [3]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    4. [4]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    5. [5]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    6. [6]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    7. [7]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    8. [8]

      Yecang Tang Shan Ling Zhen Fang . Exploration of a Hierarchical and Integration-Oriented Talent Training Model in the Demonstration Center for Experimental Chemistry Education. University Chemistry, 2024, 39(7): 188-192. doi: 10.12461/PKU.DXHX202405107

    9. [9]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    12. [12]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    13. [13]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    16. [16]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    17. [17]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    18. [18]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    19. [19]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    20. [20]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

Metrics
  • PDF Downloads(0)
  • Abstract views(1020)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return