Citation: Jingshuo Gao, Shuhan Yang, Ye Dong, Guofeng Chen. Research Advance of Coumarin-Based Fluorescent Probes for Recognition of Hg2+[J]. Chemistry, ;2021, 84(5): 441-449, 440. shu

Research Advance of Coumarin-Based Fluorescent Probes for Recognition of Hg2+

  • Corresponding author: Guofeng Chen, chenguofeng@hbu.cn
  • Received Date: 18 September 2020
    Accepted Date: 4 November 2020

Figures(26)

  • This paper summarizes the research progresses in the field of Hg2+-fluorescent probes based on coumarin during the past ten years. The molecular structure, design principle and application performance of this kind of probes are briefly introduced. The sensitivity, selectivity and detection conditions in the application process are evaluated. Finally, the research and development direction of coumarin-based fluorescent probes for Hg2+ are prospected.
  • 加载中
    1. [1]

      Carvalho C M L, Chew E H, Hashemy S I, et al. J. Biol. Chem., 2008, 283(18): 11913~11923. 

    2. [2]

      Nolan E M, Lippard S J. Chem. Rev., 2008, 108(9): 3443~3480. 

    3. [3]

      Harris H H, Pickering I J, George G N. Science, 2003, 301(5637): 1203~1203. 

    4. [4]

      Renzoni A, Zino F, Franchi E. Environ. Res., 1998, 77(2): 68~72. 

    5. [5]

      Grandjean P, Weihe P, White R F, et al. Environ. Res., 1998, 77(2): 165~172. 

    6. [6]

      Zhao Q, Cao T Y, Li F Y, et al. Organometallics, 2007, 26(8): 2077~2081. 

    7. [7]

       

    8. [8]

      Alamin M B, Bejey A M, Kučera J, et al. J. Radioanal. Nucl. Chem., 2006, 270(1): 143~146. 

    9. [9]

       

    10. [10]

      Zhang, Z F, Chen S Y, Yu H M, et al. Anal. Chim. Acta, 2004, 513(2): 417~423. 

    11. [11]

      Saban S B, Darling R B. Sens. Actuat. B, 1999, 61(1-3): 128~137. 

    12. [12]

      de Silva A P, Gunaratne H Q N, Gunnlaugsson T, et al. Chem. Rev., 1997, 97(5): 1515~1566. 

    13. [13]

      Joseph R, Rao C P. Chem. Rev., 2011, 111(8): 4658~4702. 

    14. [14]

       

    15. [15]

      Song Y X, Chen Z, Li H Q. Curr. Org. Chem., 2012, 16(22): 2690~2707. 

    16. [16]

       

    17. [17]

      Voutsadaki S, Tsikalas G K, Klontzas E, et al. Chem. Commun., 2010, 46(19): 3292~3294. 

    18. [18]

      Guha S, Lohar S, Hauli I, et al. Talanta, 2011, 85(3): 1658~1664. 

    19. [19]

      Bazzicalupi C, Caltagirone C, Cao Z F, et al. Chem. Eur. J., 2013, 19(43): 14639~14653. 

    20. [20]

      Yan L Q, Li X M, Li J P. ChemistrySelect, 2018, 3(36): 10157~10163. 

    21. [21]

      Nguyen T H, Sun T, Grattan K T V, et al. Sensors, 2019, 19(9): 2142~2154. 

    22. [22]

      Kim H J, Kim Y, Kim S J, et al. Bull. Korean Chem. Soc., 2010, 31(1): 230~233. 

    23. [23]

      Ma Q J, Zhang X B, Zhao X H, et al. Anal. Chim. Acta, 2010, 663(1): 85~90. 

    24. [24]

       

    25. [25]

      Zhou Y, Chu K H, Zhen H F, et al. Spectroc. Acta A, 2013, 106: 197~202. 

    26. [26]

      Wang M, Wen J, Qin Z H, et al. Dyes Pigments, 2015, 120: 208~212. 

    27. [27]

      Acharyya S, Gharami S, Patra L, et al. J. Fluoresc., 2017, 27(6): 2051~2057. 

    28. [28]

       

    29. [29]

      Yang S H, Yang W G, Guo Q R, et al. Tetrahedron, 2014, 70(46): 8914~8918. 

    30. [30]

      Guo Y, An J, Tang H Y, et al. Mater. Res. Bull., 2015, 63: 155~163. 

    31. [31]

      Cheng X H, Qu S H, Xiao L, et al. J. Photochem. Photobiol. A, 2018, 364: 503~509. 

    32. [32]

      Yang Y S, Zheng D J, Xu Y J, et al. Anal. Sci., 2018, 34(12): 1411~1417. 

    33. [33]

      Pan S L, Li K, Li L L, et al. Chem. Commun., 2018, 54(39): 4955~4958. 

    34. [34]

      Ding Y, Pan Y M, Han Y F. Ind. Eng. Chem. Res., 2019, 58(19): 7786~7793. 

    35. [35]

      Tsukamoto K, Shinohara Y, Iwasaki S, et al. Chem. Commun., 2011, 47(17): 5073~5075. 

    36. [36]

      Chen J H, Liu W M, Wang Y, et al. Tetrahed. Lett., 2013, 54(48): 6447~6449. 

    37. [37]

      Zhou H W, Tian W, Jiang M, et al. Anal. Sci., 2015, 31(12): 1285~1289. 

    38. [38]

      Qin S Y, Chen B, Huang J, et al. New J. Chem., 2018, 42(15): 12766~12772. 

    39. [39]

      Gu L, Zheng T, Xu Z X, et al. Spectroc. Acta A, 2019, 207: 88~95. 

    40. [40]

      Aliaga M E, Gazitua M, Rojas-Bolaños A, et al. Spectroc. Acta A, 2020, 224: 117372~117379. 

    41. [41]

      Cho Y S, Ahn K H. Tetrahed. Lett., 2010, 51(29): 3852~3854. 

    42. [42]

      Wu C J, Wang J B, Shen J J, et al. Sens. Actuat. B, 2017, 243: 678~683. 

    43. [43]

      H Lee, H J Kim. Tetrahed. Lett., 2011, 52(37): 4775~4778. 

    44. [44]

      Duan X L, Gu B, Zhou Q L, et al. J. Iran. Chem. Soc., 2017, 14: 1207~1214. 

    45. [45]

      Li Q, Hu Y, Hou H N, et al. Inorg. Chim. Acta, 2018, 471: 705~708. 

    46. [46]

      Pang B J, Li Q, Li C R, et al. J. Lumines., 2019, 205: 446~450. 

    47. [47]

      Jiao Y, Liu X, Zhou L, et al. Sens. Actuat. B, 2017, 247: 950~956. 

    48. [48]

      Chen C C, Vijay N, Thirumalaivasan N, et al. Spectroc. Acta A, 2019, 219: 135~140. 

    49. [49]

      Ghosh A C, Schulzke C. Inorg. Chim. Acta, 2016, 445: 149~154. 

    50. [50]

      Gao Y L, Zhang C, Peng S W, et al. Sens. Actuat. B, 2017, 238: 455~461. 

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    3. [3]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    4. [4]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    11. [11]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    12. [12]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    13. [13]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    14. [14]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    17. [17]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    20. [20]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

Metrics
  • PDF Downloads(12)
  • Abstract views(3177)
  • HTML views(463)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return