Citation: Yu Jingwen, Lv Jia, Cheng Yiyun. Fluorination Significantly Improves the Antibacterial Activity of Carbon Dots[J]. Chemistry, ;2020, 83(4): 360-368. shu

Fluorination Significantly Improves the Antibacterial Activity of Carbon Dots

  • Received Date: 13 November 2019
    Accepted Date: 19 December 2019

Figures(5)

  • In this study, carbon dots were synthesized by branched polyethyleneimine and ethanol, and the cationic carbon dots were further grafted with fluoroalkane chains to obtain fluorinated carbon dots. They exhibited high antibacterial activity against both Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and relative low cytotoxicity on mammalian cells. The structure-activity relationship of fluorinated carbon dots showed that fluorination is critical for the high antibacterial activity of carbon dots, and the replacement of fluoroalkane chains with alkane containing the same number of carbon atom significantly reduces the antibacterial activity. This study can provide new insights into the rational design of nanomaterials for antibacterial applications.
  • 加载中
    1. [1]

      Shankar P R. Med. J. Australa., 2014, 7:237.

    2. [2]

      Kawaharada Y, Kelly S, Nielsen M W, et al. Nature, 2015, 523:308. 

    3. [3]

      I L Medintz, H T Uyeda, E R Goldman, et al. Nat. Mater., 2005, 4(6):435~446. 

    4. [4]

      Wang J, Soisson S M, Young K, et al. Nature, 2006, 441(7091):358~361. 

    5. [5]

      Jampilek J. Curr. Med. Chem., 2018, 25(38):4972~5006.

    6. [6]

      Ali Y, Muhamad Bunnori N, Susanti D, et al. Front. Chem., 2018, 6:210. 

    7. [7]

      Santajit S, Indrawattana N. BioMed Res. Int., 2016, 8:2475067.

    8. [8]

    9. [9]

      Hu J, Quan Y, Lai Y, et al. J. Control. Release, 2017, 247:145~152. 

    10. [10]

      Li M, Wang H, Hu J, et al. Chem. Mater., 2019, 31(18):7678~7685. 

    11. [11]

      Cheng X, Li M, Wang H, et al. Chin. Chem. Lett., 2019, doi:10.1016/j.cclet.2019.07.013.

    12. [12]

      Hu J, Zheng Z, Liu C, et al. Biomater. Sci., 2019, 7(2):581~584. 

    13. [13]

      Wang H, Cheng Y. Mater. Chem. Front., 2019, 3(3):472~475. 

    14. [14]

      Hu J, Hu Q, He X, et al. Adv. Health. Mater., 2019, doi:10.1002/adhm.201901329.

    15. [15]

      Vetterli S U, Moehle K, Robinson J A. Bioorg. Med. Chem., 2016, 24(24):6332~6339. 

    16. [16]

      Zimmermann L, Das I, Désiré J, et al. J. Med. Chem., 2016, 59(20):9350~9369. 

    17. [17]

      Chalopin T, Alvarez Dorta D, Sivignon A, et al. Org. Biomol. Chem., 2016, 14(16):3913~3925. 

    18. [18]

      Jung S A, Chapman C A, Ng W L. PLoS Pathogens, 2015, 11(4):e1004837.

    19. [19]

      Andersson D I, Hughes D, Kubicek-Sutherland J Z. Drug Resist. Update, 2016, 26:43~57. 

    20. [20]

      Garneau-Tsodikova S, Labby K J. Med. Chem. Comm., 2016, 7(1):11~27.

    21. [21]

      Pelaz B, Alexiou C, Alvarez-Puebla R A, et al. ACS Nano, 2017, 11(3):2313~2381. 

    22. [22]

      Chen G, Roy I, Yang C, et al. Chem. Rev., 2016, 116(5):2826~2885. 

    23. [23]

      Hoseinnejad M, Jafari S M, Katouzian I. Crit. Rev. Microbiol., 2018, 44(2):161~181.

    24. [24]

      Raghunath A, Perumal E. Int. J. Antimicrob. Agents, 2017, 49(2):137~152. 

    25. [25]

      Wang D, Lin Z, Wang T, et al. J. Hazard. Mater., 2016, 308:328~334. 

    26. [26]

      Soenen S J, Parak W J, Rejman J, et al. Chem. Rev., 2015, 115(5):2109~2135. 

    27. [27]

      Zheng K, Setyawati M I, Leong D T, et al. Chem. Mater., 2018, 30(8):2800~2808. 

    28. [28]

      Zhou Z, Yan Y, Wang L, et al. Biomaterials, 2019, 203:63~72. 

    29. [29]

      Wang C, Wang D, Dai T, et al. Adv. Funct. Mater., 2018, 28(33):1802127. 

    30. [30]

      Namdari P, Negahdari B, Eatemadi A. Biomed. Pharmacother., 2017, 87:209~222. 

    31. [31]

      Peng Z, Han X, Li S, et al. Coord. Chem. Rev., 2017, 343:256~277. 

    32. [32]

      Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015, 11(14):1620~1636. 

    33. [33]

      Lim S Y, Shen W, Gao Z. Chem. Soc. Rev., 2015, 44(1):362~381. 

    34. [34]

      Gaddam R R, Mukherjee S, Punugupati N, et al. Mater. Sci. Eng. C, 2017, 73:643~652.

    35. [35]

      Cao L, Yang S T, Wang X, et al. Theranostics, 2012, 2(3):295~301. 

    36. [36]

      Dou Q, Fang X, Jiang S, et al. RSC Adv., 2015, 5(58):46817~46822. 

    37. [37]

      Meziani M J, Dong X, Zhu L, et al. ACS Appl. Mater. Interf., 2016, 8(17):10761~10766. 

    38. [38]

      Sun Y P, Zhou B, Lin Y, et al. J. Am. Chem. Soc., 2006, 128(24):7756~7757. 

    39. [39]

      Wang Q, Huang X, Long Y, et al. Carbon, 2013, 59:192~199. 

    40. [40]

      Zhong D, Zhuo Y, Feng Y, et al. Biosens. Bioelectron., 2015, 74:546~553. 

    41. [41]

      Bing W, Sun H, Yan Z, et al. Small, 2016, 12(34):4713~4718. 

    42. [42]

      Jian H J, Wu R S, Lin T Y, et al. ACS Nano, 2017, 11(7):6703~6716. 

    43. [43]

      Harroun S G, Lai J Y, Huang C C, et al. ACS Infect. Dis., 2017, 3(11):777~779. 

    44. [44]

      Jiang F, Chen D, Li R, et al. Nanoscale, 2013, 5(3):1137~1142. 

    45. [45]

      Sun H, Gao N, Dong K, et al. ACS Nano, 2014, 8(6):6202~6210. 

    46. [46]

      Ristic B Z, Milenkovic M M, Dakic I R, et al. Biomaterials, 2014, 35(15):4428~4435. 

    47. [47]

      Sattarahmady N, Rezaie-Yazdi M, Tondro G H, et al. J. Photoch. Photobiol. B, 2017, 166:323~332. 

    48. [48]

      Wang L, Zhou H S. Anal. Chem., 2014, 86(18):8902~8905. 

    49. [49]

      Sahu S, Behera B, Maiti T K, et al. Chem. Commun., 2012, 48(70):8835~8837. 

    50. [50]

      Jiang C, Wu H, Song X, et al. Talanta, 2014, 127:68~74. 

    51. [51]

      Du F, Zhang M, Li X, et al. Nanotechnology, 2014, 25(31):315702. 

    52. [52]

      Zhang Z, Shen W, Ling J, et al. Nat. Commun., 2018, 9(1):1377. 

    53. [53]

      Shen W, Wang Q, Shen Y, et al. ACS Cent. Sci., 2018, 4(10):1326~1333. 

    54. [54]

      Fox S J, Fazil M, Dhand C, et al. Acta Biomater., 2016, 37:155~164. 

    55. [55]

      Wang M, Liu H, Li L, et al. Nat. Commun., 2014, 5(1):3053.

    56. [56]

      Li L, Song L, Liu X, et al. ACS Nano, 2017, 11(1):95~111. 

    57. [57]

      Li L, Song L, Yang X, et al. Biomaterials, 2016, 111:124~137. 

    58. [58]

      Liu H, Wang Y, Wang M, et al. Biomaterials, 2014, 35(20):5407~5413. 

    59. [59]

      Lv J, He B, Yu J, et al. Biomaterials, 2018, 182:167~175. 

    60. [60]

      Wang H, Wang Y, Wang Y, et al. Angew. Chem. Int. Ed., 2015, 54(40):11647~11651. 

    61. [61]

      Wang L H, Wu D C, Xu H X, et al. Angew. Chem. Int. Ed., 2016, 55(2):755~759. 

    62. [62]

      Wang M, Cheng Y. Biomaterials, 2014, 35(24):6603~6613. 

    63. [63]

      Yang J, Zhang Q, Chang H, et al. Chem. Rev., 2015, 115(11):5274~5300. 

    64. [64]

      Kretzmann J A, Ho D, Evans C W, et al. Chem. Sci., 2017, 8(4):2923~2930.

    65. [65]

      Lv J, Fan Q, Wang H, et al. Biomaterials, 2019, 218:119358. 

    66. [66]

       

    67. [67]

      Liu C, Wan T, Wang H, et al. Sci. Adv., 2019, 5:eaaw8922.

  • 加载中
    1. [1]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    2. [2]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    3. [3]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    4. [4]

      Rui Xu Wei Li Tianyi Li . Exploration of Teaching Reform in the Course of “Principles of Chemical Engineering” in the Polymer Materials and Engineering Major. University Chemistry, 2025, 40(4): 54-58. doi: 10.12461/PKU.DXHX202404081

    5. [5]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    6. [6]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    7. [7]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    8. [8]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    9. [9]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    10. [10]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    11. [11]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    12. [12]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    13. [13]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    16. [16]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    19. [19]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    20. [20]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

Metrics
  • PDF Downloads(19)
  • Abstract views(1014)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return