Citation: HAN Lei, HUANG Chuan-feng, LIU Shu-wei, CHENG Qiu-xiang, CHANG Fang-yuan. Investigation of performance of Ni/W-USY/Al2O3 catalyst with full mesoporous in Fischer Tropsch wax hydrocracking[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 329-337. shu

Investigation of performance of Ni/W-USY/Al2O3 catalyst with full mesoporous in Fischer Tropsch wax hydrocracking

  • Corresponding author: HUANG Chuan-feng, huangcf1130@163.com
  • Received Date: 29 October 2018
    Revised Date: 14 January 2019

    Fund Project: The project was supported by National Science and Technology Major Project 2018YFB0604600The project was supported by National Science and Technology Major Project (2018YFB0604600)

Figures(8)

  • Ni/W-USY/Al2O3 with full mesoporous structure was prepared and used for hydrocracking of Fischer Fropsch wax. The catalyst was evaluated for its reaction performance, product characteristics and catalyst properties change. In a 312 h experiment, the result showed that the catalyst possessed high initial activity, and maintained stable after 120 h, and did not show obvious deactivation afterward. When the heavy wax conversion reached 73.95% at the stable stage, the fuel oil selectivity reached to 98.46% and C3, 4 constituted the most cracked gas. Gasoline, kerosene and diesel, as the products, were transparent and composed of paraffins and iso-paraffins substituted by methyl-groups. The iso-paraffin contents in the three products were 63.98%, 52.26% and 48.90% respectively. The fresh catalyst contained two main active states of WS2 and NiWS, had good metal dispersion and rich mesoporous structure. With transition from high activity to stable state of the catalyst property, part of W migrated and formed more Ni-S-W bonds with Ni, and some W-S bonds broke to form W-W bonds after releasing S, resulting in the increase of active states of NiWS and the decrease of WS2, and forming more Brönsted acid sites and less Lewis acid sites.
  • 加载中
    1. [1]

      GREGOR H, ERIK R, MATTHIAS J. Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas[J]. Energy, 2017,132(1):370-381.  

    2. [2]

      YANG Chao, JIANG Jian, LU Dan. Advances in Fischer-Tropsch wax hydrocracking process[J]. Chem Ind Eng Prog, 2013,32(12):2882-2890.  

    3. [3]

      DIETER L. Hydrocracking of iron-catalyzed fischer-tropsch waxes[J]. Energy Fuels, 2005,19(5):1795-1803. doi: 10.1021/ef050085v

    4. [4]

      JIANG J, YANG C, LU Z J, DING J, LI T, LU Y, CAO F H. Characterization and application of a Pt/ZSM-5/SSMF catalyst for hydrocracking of paraffin wax[J]. Catal Commun, 2015,60(5):1-4.  

    5. [5]

      YAN P H, TAO Z C, HAO K, WANG Y D, YANG Y, LI Y W. Effect of impregnation methods on nickel-tungsten catalysts and its performance on hydrocracking Fischer-Tropsch wax[J]. J Fuel Chem Technol, 2013,41(6):691-697. doi: 10.1016/S1872-5813(13)60032-8

    6. [6]

      HAAN-DE R, JOORST G, MOKOENA E, NICOLAIDES C P. Non-sulfided nickel supported on silicated alumina as catalyst for the hydrocracking of n-hexadecane and of iron-based Fischer-Tropsch wax[J]. Appl Catal A:Gen, 2007,327(2):247-254. doi: 10.1016/j.apcata.2007.05.022

    7. [7]

      KAZAKOW M O, NADEINA K A, DANILOVA I G, DIK P P, KLIMOV O V, PEREYMA V Y. Hydrocracking of vacuum gas oil over NiMo/Y-Al2O3:Effect of mesoporosity introduced by zeolite Y recrystallization[J]. Catal Today, 2018,305(1):117-125.

    8. [8]

      LI Yu-hui, FENG Li-juan, WANG Jing-gang, XU Kang-wen, LI Chun-hu. Oxidative desulfurization of diesel oil by mesoporous catalyst MoO3/Al2O3[J]. Acta Pet Sin (Pet Process Sect), 2011,27(6):878-883. doi: 10.3969/j.issn.1001-8719.2011.06.007

    9. [9]

      ATAUSHI I, DAISUKE K, THANITA S, HIROYUKI N, TADANON H. Preparation and characterization of zeolite-containing silica-aluminas with three layered micro-meso-meso-structure and their reactivity for catalytic cracking of soybean oil using Curie point pyrolyzer[J]. Fuel Process Technol, 2017,161(15):8-16.  

    10. [10]

      LI Tao, CHE Xiao-li, YUN Yi-feng, TAO Zhi-chao, ZHAO Chun-li, YANG Yong, LI Yong-wang. Study of the relationship between the acidity of amorphous silica-alumina supports and diesel selectivity in Fischer-Tropsch wax hydrocracking[J]. J Fuel Chem Technol, 2017,45(5):589-595. doi: 10.3969/j.issn.0253-2409.2017.05.010 

    11. [11]

      SIMONE G, LAURA A P, VINCENZO C, CHIARA G. Liquid fuels from Fischer-Tropsch wax hydrocracking:Isomer distribution[J]. Catal Today, 2010,156(1/2):58-64.  

    12. [12]

      VINCENZO C, CHIARA G, WALLACE O P, ROSA C, ROBERTO G, PIETRO S. Middle distillates from hydrocracking of FT waxes:Composition, characteristics and emission properties[J]. Catal Today, 2010,149(1/2):40-46.  

    13. [13]

      YANG Ping, XIN Jing, LI Ming-feng. Effects of Molybdenum/Tungsten Oxides Loading on Structure and Acidity of Y Zeolites[J]. Acta Pet Sin (Pet Proces Sect), 2011,25(5):668-673. doi: 10.3969/j.issn.1001-8719.2011.05.002

    14. [14]

      TAN Zheng-xing, SHEN Bao-jian. Dealumination, silicon reinsertion, and secondary pore formation in steaming of zeolite Y[J]. J Chem Ind Eng, 2016,67(8):3160-3167.  

    15. [15]

      JOHN W. Hydrocracking processes and catalysts[J]. Fuel Process Technol, 1993,35(2):55-85.  

    16. [16]

      GOLUBINA E V, LOKTEVA E S, EROKHIN A V, VELIGZHANIN A A, ZUBAVICHUS Y V, LIKHOLOBOV V A, LUNIN V V. The role of metal-support interaction in catalytic activity of nanodiamond-supported nickel in selective phenylacetylene hydrogenation[J]. J Catal, 2016,344:90-99. doi: 10.1016/j.jcat.2016.08.017

    17. [17]

      ZUO Dong-hua, NIE Hong, MICHEL Vrinat, SHI Ya-hua, MICHEL Lacroix, LI Da-dong. Study on the hydrodesulfurization active phase insulfided NiW/Al2O3catalyst I.XPS and HREM characterizations[J]. Chin J Catal, 2004,25(4):309-314. doi: 10.3321/j.issn:0253-9837.2004.04.014

    18. [18]

      SANTOLALLA-VARGAS C E, SUAREZ T V A, REYES J A, CROMWELL D K, PAWELEC B, FIERRO J L G. Effects of pH and chelating agent on the NiWS phase formation in NiW/γ-Al2O3 HDS catalysts[J]. Mater Chem Phys, 2015,166:105-115. doi: 10.1016/j.matchemphys.2015.09.033

    19. [19]

      DIAZ-DE-LEON J N, PICQUART M, MASSIN L, VRINAT M, REYES-LOS-DE J A. Hydrodesulfurization of sulfur refractory compounds:Effect of gallium as an additive in NiWS/γ-Al2O3catalysts[J]. J Mol Catal A:Chem, 2012,363-364:311-321. doi: 10.1016/j.molcata.2012.07.006

    20. [20]

      PARTHASARATHI B, SEENIVASAN H, RAJAM K S, WILLIAM G. XRD, FESEM and XPS studies on heat treated Co-W electrodeposits[J]. Mater Lett, 2012,76:103-105. doi: 10.1016/j.matlet.2012.02.046

    21. [21]

      LU S S, XIAO S, ZHANG L M, DONG B, GAO W K, DAI F N, LIU B, CHAI Y M, LIU C G. Heterostructured binary Ni-W sulfides nanosheets as pH-universal electrocatalyst for hydrogen evolution[J]. Appl Surf Sci, 2018,455:455-435. doi: 10.1016/j.apsusc.2018.05.155

    22. [22]

      SZILAGYI I M, SAJIO I, KIRALY P, TARKANYI G, TOTH A L. Phase transformations of ammonium tungsten bronzes[J]. J Therm Anal Calorim, 2009,98(3):707-716. doi: 10.1007/s10973-009-0287-x

    23. [23]

      ZHANG Jun. Design of zeolites and hydrocracking catalyst for maximizing middle distillates[D]. Qingdao: China University of Petroleum, 2008: 91-95.

    24. [24]

      YAN Peng-hui. Fundermantal research of hydrocracking perfomance over Ni/W-HY/Al2O3 catalyst on fischer-tropsch wax[D]. Beijing: University of Chinese Academy of Sciences, 2013: 37-42.

    25. [25]

      ZHANG Jian, LU Hai-long, SUN Jian-wei, YAO Jian-dong, LI Quan-zhi. EXSFS study of Ni/W/zeolite/Al2O3hydrocracking catalyst sulfurized with different modified zeolites[J]. Chem J Chin Univ, 2000,21(10):1459-1463. doi: 10.3321/j.issn:0251-0790.2000.10.003

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(7)
  • Abstract views(795)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return