Citation: LI Ying, ZHAO Lu, LIU Xiao-zhan, ZENG Chun-xin, FANG Ke-gong. Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 513-522. shu

Preparation of KNiMo-based catalysts by using non-thermal plasma and their catalytic performance in the synthesis of higher alcohols from syngas

  • Corresponding author: ZHAO Lu, zhaolu@sxicc.ac.cn FANG Ke-gong, kgfang@sxicc.ac.cn
  • Received Date: 8 January 2019
    Revised Date: 20 February 2019

    Fund Project: National Natural Science Foundation of China 21473230National Natural Science Foundation of China 21603255Natural Science Foundation of Shanxi 201701D221054Natural Science Foundation of Shanxi 201601D021052the National Key R&D Program of China 2018YFB0604700The project was supported by the National Key R&D Program of China (2018YFB0604700), National Natural Science Foundation of China (21603255, 21473230) and Natural Science Foundation of Shanxi (201601D021052, 201701D221054)

Figures(9)

  • A series of KNiMo-based catalysts were prepared by using non-thermal plasma and characterized by XRD, nitrogen sorption, TEM, H2-TPD, CO-TPD, and in-situ CO adsorption DRIFTS; their catalytic performance in the higher alcohol synthesis (HAS) from syngas was investigated. The results indicate that in comparison with those prepared by the conventional thermal method, the KNiMo-based catalysts prepared by using non-thermal plasma display thinner and shorter MoS2 slabs and more highly dispersed and coordinatively unsaturated sites, which endow the KNiMo-based catalysts excellent performance in HAS. In particular, for the HAS over the KNiMo-DPS catalyst under 350 ℃, 5 MPa, and a gas hourly space velocity (GHSV) of 5000 h-1, the conversion of CO reaches 32.3%, with a selectivity of 75.1% to total alcohol and a C2+ alcohol selectivity of 65.2% in the total alcohols.
  • 加载中
    1. [1]

      AO M, PHAM G H, SUNARSO J, TADE M O, LIU S. Active centers of catalysts for higher alcohol synthesis from syngas:A review[J]. ACS Catal, 2018,8(8):7025-7050. doi: 10.1021/acscatal.8b01391

    2. [2]

      SHI Li-min, CHU Wei, LIU Zeng-chao. Research progress of catalysts for higher-alcohol synthesis from syngas[J]. Chem Ind Eng Prog, 2011,30(1):162-166.  

    3. [3]

      FANG K, LI D, LIN M, XIANG M, WEI W, SUN Y H. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today, 2009,147(2):133-138. doi: 10.1016/j.cattod.2009.01.038

    4. [4]

      CHEN W, DING Y, XUE F, SONG X, NING L. Highly efficient β-SiC-supported 0.5% Rh-based catalyst for CO hydrogenation to C2 oxygenates[J]. Catal Commun, 2016,85:44-47. doi: 10.1016/j.catcom.2016.07.016

    5. [5]

      HAN Tong, ZHAO Lin, YUE Yi-zhi, LIU Yuan. Progress on the rhodium-based catalysts for the synthesis of higher alcohol[J]. Chem Ind Eng Prog, 2016,35(4):1087-1093.  

    6. [6]

      SUN K, GAO X, BAI Y, TAN M, YANG G, TAN Y. Synergetic catalysis of bimetallic copper-cobalt nanosheets for direct synthesis of ethanol and higher alcohols from syngas[J]. Catal Sci Technol, 2018,8(15):3936-3947. doi: 10.1039/C8CY01074A

    7. [7]

      SHI Li-min, CHU Wei, DENG Si-yu. Studies on higher alcohols from syngas over the La promoted CuCo catalysts[J]. J Fuel Chem Technol, 2012,40(4):436-440. doi: 10.3969/j.issn.0253-2409.2012.04.009 

    8. [8]

      PAN Dong-ming, LIU Gui-long, LIU Yuan. Studies on higher alcohols from syngas over the Co-Cu/ZrO2-La2O3 catalysts[J]. Chem Eng Technol, 2015,32(4):1-6. doi: 10.3969/j.issn.1006-7906.2015.04.001

    9. [9]

      ZHAO L, DUAN J, ZHANG Q, LI Y, FANG K. Preparation, structural characteristics, and catalytic performance of Cu-Co alloy supported on Mn-Al oxide for higher alcohol synthesis via syngas[J]. Ind Eng Chem Res, 2018,57(44):14957-14966. doi: 10.1021/acs.iecr.8b03304

    10. [10]

      WEI Jun-yi, GAO Zhi-hua, HUANG Wei, AI Pei-pei, YAN Fei-fei, YOU Xiang-xuan. Effect of structural ordering on the performance of mesoporous carbon supported CuCoCe catalyst in the synthesis of higher alcohols from syngas[J]. Chem J Chin Univ, 2018,39(8):1741-1749.  

    11. [11]

      LIAKAKOU E T, ISAACS M A, WILSON K, LEE A F, HERACLEOUS E. On the Mn promoted synthesis of higher alcohols over Cu derived ternary catalysts[J]. Catal Sci Technol, 2017,7(4):988-999. doi: 10.1039/C7CY00018A

    12. [12]

      CHENG Shu-yan, KOU Jia-wei, GAO Zhi-hua, HUANG Wei. Catalytic synthesis of higher alcohols form syngas over composite material of CuZnAl/carbon fibers[J]. Chin J Inorg Chem, 2017,33(12):2233-2240. doi: 10.11862/CJIC.2017.268

    13. [13]

      ZHANG F, LI Y, GAO S, FANG H, LIANG X, YUAN Y. Synthesis of higher alcohols by CO hydrogenation on a K-promoted Ni-Mo catalyst derived from Ni-Mo phyllosilicate[J]. Catal Sci Technol, 2018,8(16):4219-4228. doi: 10.1039/C8CY01095A

    14. [14]

      PI Jin-lin, ZHANG Cheng-fang. Distribution of mixed alcohols in products synthesized over molybdenum sulfide catalysts[J]. J Fuel Chem Technol, 1993,21(1):96-101.  

    15. [15]

      LUAN X, YONG J, DAI X, ZHANG X, QIAN H, YANG Y, ZHAO H, PENG W, HUANG X. Tungsten-doped molybdenum sulfide with dominant double-layer structure on mixed MgAl oxide for higher alcohol synthesis in CO hydrogenation[J]. Ind Eng Chem Res, 2018,57(31):10170-10179. doi: 10.1021/acs.iecr.8b01378

    16. [16]

      LI H, ZHANG W, WANG Y, SHUI M, SUN S, BAO J, GAO C. Nanosheet-structured K-Co-MoS2 catalyst for the higher alcohol synthesis from syngas:Synthesis and activation[J]. J Energy Chem, 2019,30:57-62. doi: 10.1016/j.jechem.2018.03.019

    17. [17]

      WANG N, LI J, LIU X, HU R, ZHANG Y, SU H, GU X. Remarkable enhancement to the catalytic performance of molybdenum sulfide catalysts via in situ decomposition method for higher alcohols synthesis from syngas[J]. RSC Adv, 2016,6(113):112356-112362. doi: 10.1039/C6RA24406H

    18. [18]

      SANTOS V P, LINDEN B V D, CHOJECKI A, BUDRONI G, CORTHALS S, SHIBATA H, MEIMA G R, KAPTEIJN F, MAKKEE M, GASCON J. Mechanistic insight into the synthesis of higher alcohols from syngas:The role of K promotion on MoS2 catalysts[J]. ACS Catal, 2013,3(7):1634-1637. doi: 10.1021/cs4003518

    19. [19]

      LUK H T, FORSTER T, MONDELLI C, SIOL S, CURULLA-FERRE D, STEWART J A, PEREZ-RAMIREZ J. Carbon nanofibres-supported KCoMo catalysts for syngas conversion into higher alcohols[J]. Catal Sci Technol, 2018,8(1):187-200. doi: 10.1039/C7CY01908D

    20. [20]

      YONG J, LUAN X, DAI X, ZHANG X, QIAO H, YANG Y, HUANG X. Tuning the metal-support interaction in supported K-promoted NiMo catalysts for enhanced selectivity and productivity towards higher alcohols in CO hydrogenation[J]. Catal Sci Technol, 2017,7(18):4206-4215. doi: 10.1039/C7CY01295K

    21. [21]

      JALOWIECKI L, GRIMBLOT J, BONNELLE J P. Quantitative detection of reactive hydrogen on MoS2/γ-Al2O3 and on γ-Al2O3[J]. J Catal, 1990,126(1):101-108.

    22. [22]

      OKAMOTOY, ISHIHARAS, KAWANOM, SATOH, KUBOTAT. PreparationofCo-Mo/Al2O3 model sulfide catalysts for hydrodesulfurization and their application to the study of the effects of catalyst preparation[J]. J Catal, 2003,217(1):12-22.  

    23. [23]

      PONEC V. Active centres for synthesis gas reactions[J]. Catal Today, 1992,12(2/3):227-254.  

    24. [24]

      ZHAO L, WANG Y, SUN Z, WANG A, LI X, SONG C, HU Y. Synthesis of highly dispersed metal sulfide catalysts via low temperature sulfidation in dielectric barrier discharge plasma[J]. Green Chem, 2014,16(5):2619-2626. doi: 10.1039/C3GC42313A

    25. [25]

      XU Hui-yuan, CHU Wei, SHI Li-min, ZHANG Hui, DENG Si-yu. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohol synthesis[J]. J Fuel Chem Technol, 2009,37(2):212-216. doi: 10.3969/j.issn.0253-2409.2009.02.016 

    26. [26]

      LIU C J, VISSOKOV G P, JANG B W L. Catalyst preparation using plasma technologies[J]. Catal Today, 2002,72(3):173-184.  

    27. [27]

      JIANG Q, ZHANG H, WANG S. Plasma-enhanced low-temperature solid-state synthesis of spinel LiMn2O4 with superior performance for lithium-ion batteries[J]. Green Chem, 2016,18(3):662-666. doi: 10.1039/C5GC01563D

    28. [28]

      LI Y, JANG B W L. Selective hydrogenation of acetylene over Pd/Al2O3 catalysts:Effect of non-thermal RF plasma preparation methodologies[J]. Top Catal, 2017,60(12/14):997-1008.  

    29. [29]

      ZHANG Xu, SUN Wen-jing, CHU Wei. Effect of glow discharge plasma treatment on the performance of Ni/SiO2 catalyst in CO2 methanation[J]. J Fuel Chem Technol, 2013,41(1):96-101. doi: 10.3969/j.issn.0253-2409.2013.01.016 

    30. [30]

      TAN Y, LIU H, LIU X Y, WANG A, LIU C J, ZHANG T. Effective removal of the protective ligands from Au nanoclusters by ambient pressure nonthermal plasma treatment for CO oxidation[J]. Chin J Catal, 2018,39(5):929-936. doi: 10.1016/S1872-2067(18)63018-9

    31. [31]

      WANG N, SHEN K, YU X, QIAN W, CHU W. Preparation and characterization of a plasma treated NiMgSBA-15 catalyst for methane reforming with CO2 to produce syngas[J]. Catal Sci Technol, 2013,3(9):2278-2287. doi: 10.1039/c3cy00299c

    32. [32]

      ZHAO L, LI W, ZHOU J, MU X, FANG K. One-step synthesis of Cu-Co alloy/Mn2O3-Al2O3 composites and their application in higher alcohol synthesis from syngas[J]. Int J Hydrogen Energy, 2017,42(27):17414-17424. doi: 10.1016/j.ijhydene.2017.03.143

    33. [33]

      ZHAO L, LI Y, LIU X, FANG K. Low-temperature synthesis of high-performance nano-MoS2-based catalyst via non-thermal plasma for higher alcohol synthesis from syngas[J]. Catal Today, 2019. doi: 10.1016/j.cattod.2019.01.069

    34. [34]

      ZHAO L, MU X, LIU T, FANG K. Bimetallic Ni-Co catalysts supported on Mn-Al oxide for selective catalytic CO hydrogenation to higher alcohols[J]. Catal Sci Technol, 2018,8(8):2066-2076. doi: 10.1039/C7CY02555F

    35. [35]

      ZHAO L, MU X, YU M, FANG K. A novel catalyst for higher alcohol synthesis from syngas:Co-Zn supported on Mn-Al oxide[J]. Fuel Proc Technol, 2018,177:16-29. doi: 10.1016/j.fuproc.2018.04.006

    36. [36]

      DAI X, LI Z, DU K, SUN H, YANG Y, ZHANG X, MA X, WANG J. Facile synthesis of in-situ nitrogenated graphene decorated by few-layer MoS2 for hydrogen evolution reaction[J]. Electrochim Acta, 2015,171:72-80. doi: 10.1016/j.electacta.2015.05.017

    37. [37]

      YANG D, FRINDT R F. Powder x-ray diffraction of turbostratically stacked layer systems[J]. J Mater Res, 1996,11(7):1733-1738. doi: 10.1557/JMR.1996.0217

    38. [38]

      LACROIX M, DUMONTEILC , BREYSSE M, KASZTELAN S. Hydrogen activation on alumina supported MoS2 based catalysts:Role of the promoter[J]. J Catal, 1999,185(1):219-222.  

    39. [39]

      PARK T Y, NAM I S, KIM Y G. Kinetic analysis of mixed alcohol synthesis from syngas over K/MoS2 catalyst[J]. Ind Eng Chem Res, 1997,36(12):5246-5257. doi: 10.1021/ie9605701

    40. [40]

      ZOU Z Q, MENG M, ZHA Y Q. The effect of dopant Cu, Fe, Ni or La on the structures and properties of mesoporous Co-Ce-O compound catalysts[J]. J Alloys Comp, 2009,470(1):96-106.  

    41. [41]

      LARRUBIA VARGAS M A, BUSCA G, COSTANTINO U, MARMOTTINI F, MONTANARI T, PATRONO P, PINZARI F, RAMIS G. An IR study of methanol steam reforming over ex-hydrotalcite Cu-Zn-Al catalysts[J]. J Mol Catal A, 2007,266(1/2):188-197.  

    42. [42]

      YANG X, WEI Y, SU Y, ZHOU L. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032

    43. [43]

      SURISETTY V R, TAVASOLI A, DALAI A K. Synthesis of higher alcohols from syngas over alkali promoted MoS2 catalysts supported on multi-walled carbon nanotubes[J]. Appl Catal A:Gen, 2009,365(2):243-251. doi: 10.1016/j.apcata.2009.06.017

    44. [44]

      WOO H C, PARK K Y, KIM Y G, NAMAU I S, SHIKCHUNG J, LEE J S. Mixed alcohol synthesis from carbon monoxide and dihydrogen over potassium-promoted molybdenum carbide catalysts[J]. Appl Catal A:Gen, 1991,75(1):267-280. doi: 10.1016/S0166-9834(00)83136-X

    45. [45]

      SURISETTY V R, ESWARAMOORTHI I, DALAI A K. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group Ⅷ metals[J]. Fuel, 2012,96(7):77-84.  

    46. [46]

      TOYODA T, MINAMI T, QIAN E W. Mixed alcohol synthesis over sulfided molybdenum-based catalysts[J]. Energy Fuels, 2013,27(7):3769-3777. doi: 10.1021/ef400262a

    47. [47]

      PARIS R S, MONTES V, BOUTONNET M, JARAS S. Higher alcohol synthesis over nickel-modified alkali-doped molybdenum sulfide catalysts prepared by conventional coprecipitation and coprecipitation in microemulsions[J]. Catal Today, 2015,258:294-303. doi: 10.1016/j.cattod.2014.12.003

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    4. [4]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    7. [7]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    8. [8]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    10. [10]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    20. [20]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

Metrics
  • PDF Downloads(8)
  • Abstract views(976)
  • HTML views(196)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return