Citation: Jiang Pengfei, Yang Hongcheng, Ji Chenyang, Chen Zhu, Nie Libo. Progress in Quartz Crystal Microbalance and Its Application in Biological Detection[J]. Chemistry, ;2018, 81(2): 129-133. shu

Progress in Quartz Crystal Microbalance and Its Application in Biological Detection

  • Corresponding author: Nie Libo, libonie@aliyun.com
  • Received Date: 20 August 2017
    Accepted Date: 31 October 2017

Figures(3)

  • Quartz crystal microbalance (QCM) is a significant analytical tool which has the advantages of high sensitivity, label-free and real-time detection. In the field of biological detection, QCM combining with signal amplification methods is widely used in ultrasensitive detection of biomolecules. The novel QCM with dissipation (QCM-D) is mainly used to investigate the microscopic processes such as adsorption/desorption and configuration change of biomolecules by studying the thickness and viscoelasticity of the thin film. This paper reviewed the construction of QCM and QCM-D biosensors as well as their research progress in the detection of DNA, protein, cell and microorganism.
  • 加载中
    1. [1]

      J Curie, P Curie. Bull. Soc. Min. de France, 1880, 3: 90~93.

    2. [2]

      G Sauerbrey. Z. Phys. A: Hadrons Nucl., 1959, 155(2): 206~222. 

    3. [3]

      P L Konash, G J Bastiaans. Anal. Chem., 1980, 52(12): 1929~1931. 

    4. [4]

      K K Kanazawa, J G Gordon. Anal. Chem., 1985, 57(8): 1770~1771. 

    5. [5]

      M A Cooper, V T Singleton. J. Mol. Recognit., 2007, 20(3): 154~184. 

    6. [6]

      M Rodahl, F Höök, A Krozer et al. Rev. Sci. Instrum., 1995, 66(7): 3924~3930. 

    7. [7]

      Y Zhao, H Wang, W Tang et al. Chem. Commun., 2015, 51(53): 10660~10663.

    8. [8]

      L Zhou, P Lu, M Zhu et al. Microchim. Acta, 2016, 183(2): 881~887. 

    9. [9]

      L Liu, C Wu, S Zhang. Anal. Chem., 2017, 89(7): 4309~4313. 

    10. [10]

      G Stengel, F Höök, W Knoll. Anal. Chem., 2005, 77(11): 3709~3714. 

    11. [11]

      A Tsortos, A Grammoustianou, R Lymbouridou et al. Chem. Commun., 2015, 51(57): 11504~11507. 

    12. [12]

      L Sun, S Svedhem, B Åkerman. Langmuir, 2014, 30(28): 8432~8441. 

    13. [13]

      R Akter, C K Rhee, M A Rahman. Biosens. Bioelectron., 2015, 66: 539~546. 

    14. [14]

      X Deng, M Chen, Q Fu et al. ACS Appl. Mater. Interf., 2016, 8(3): 1893~1902. 

    15. [15]

      Y Luo, T Liu, J Zhu et al. Anal. Chem., 2015, 87(22): 11277~11284. 

    16. [16]

      J Liao, M Lu, D Tang. Biochem. Eng. J., 2016, 114: 276~282. 

    17. [17]

      M Stoytcheva, R Zlatev, S Cosnier et al. Biosens. Bioelectron., 2013, 41: 862~866. 

    18. [18]

      X Zhang, J Chen, H Liu et al. Biosens. Bioelectron., 2015, 65: 341~345. 

    19. [19]

      B Fernández-Montes Moraleda, J San Román, L M Rodríguez-Lorenzo. J. Biomed. Mater. Res. A, 2016, 104(10): 2585~2594. 

    20. [20]

      H T M Phan, S Bartelt-Hunt, K B Rodenhausen et al. PloS One, 2015, 10(10): e0141282. 

    21. [21]

      Y Zhou, Q Xie. Sens. Actuat. B, 2016, 223: 9~14. 

    22. [22]

      S Zhang, H Bai, J Luo et al. Analyst, 2014, 139(23): 6259~6265. 

    23. [23]

      W Shan, Y Pan, H Fang et al. Talanta, 2014, 126: 130~135. 

    24. [24]

      D Chronaki, D I Stratiotis, A Tsortos et al. Sens. Bio-Sens. Res., 2016, 11: 99~106. 

    25. [25]

      W L Kao, H Y Chang, K Y Lin et al. J. Phys. Chem. C, 2017, 121(1): 533~541. 

    26. [26]

      X Zhu, Z Wang, A Zhao et al. Colloid. Surf. B, 2014, 116: 459~464. 

    27. [27]

      D Stratton, S Lange, S Kholia et al. Biochem. Biophys. Res. Commun., 2014, 453(3): 619~624. 

    28. [28]

      S R Hong, M S Kim, H D Jeong et al. Aquac. Res., 2017, 48(5): 2055~2063. 

    29. [29]

      Z Farka, D Kovář, P Skládal. Sensors, 2014, 15(1): 79~92. 

    30. [30]

      N A Masdor, Z Altintas, I E Tothill. Biosens. Bioelectron., 2016, 78: 328~336. 

    31. [31]

      Y Wang, R Narain, Y Liu. Langmuir, 2014, 30(25): 7377~7387. 

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    4. [4]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    5. [5]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    6. [6]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    12. [12]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    17. [17]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    18. [18]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

Metrics
  • PDF Downloads(24)
  • Abstract views(3327)
  • HTML views(1673)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return