Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization
- Corresponding author: WANG Hai-yan, fswhy@126.com
Citation:
KANG Lei, WANG Hai-yan, SHAO He, SUN Na, WANG Yu-jia, YANG Zhan-xu. Study on the synthesis of composite NiO-ZnO nanowire adsorbent and its performance for desulfurization[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(5): 551-557.
ULLAH R, BAI P, WU P, ETIM U J, ZHANG Z, HAN D, SUBHAN F, ULLAH S, ROOD M, YAN Z F. Superior performance of freeze-dried Ni/ZnO-Al2O3 adsorbent in the ultra-deep desulfurization of high sulfur model gasoline[J]. Fuel Process Technol, 2017,156:505-514. doi: 10.1016/j.fuproc.2016.10.022
KONG A H, WEI Y Y, LI Y H. Reactive adsorption desulfurization over a Ni/ZnO adsorbent prepared by homogeneous precipitation[J]. Front Chem Sci Eng, 2013,7(2):170-176. doi: 10.1007/s11705-013-1322-9
WANG Guang-jian, LI Jia-jia, WU Chun-ze, WANG Fang. Study on the preparation of TiO2-Al2O3 composite support and its application in Co-Mo/TiO2-Al2O3 catalyst for hydro-desulfurization[J]. J Fuel Chem Technol, 2016,44(12):1518-1522. doi: 10.3969/j.issn.0253-2409.2016.12.016
AHMEDZEKI N S, ALHUSSAINI M M, ALNAAMA A A J, ALBAYATI I S. Reactive adsorption desulfurization by nanocrystalline ZnO/Zeolite a molecular sieves[J]. J Eng, 2017,23(9):38-49.
TAWARA K, NISHIMURA T, IWANAMI H, NISHIMOTO T, HASUIKE T. New hydrodesulfurization catalyst for petroleum-fed fuel cell vehicles and cogenerations[J]. Ind Eng Chem Res, 2001,40(10):2367-2370. doi: 10.1021/ie000453c
GE H, TANG M, WEN X D. Ni/ZnO nano sorbent for reactive adsorption desulfurization of refinery oil streams[J]. IGI Global, 2016:216-239.
HUANG L, QIN Z, WANG G, DU M, GE H, LI X, WANG J. A detailed study on the negative effect of residual sodium on the performance of Ni/ZnO adsorbent for diesel fuel desulfurization[J]. Ind Eng Chem Res, 2010,49(10):4670-4675. doi: 10.1021/ie100293h
REN Z, GUO Y, WROBEL G, KNECHT D A, ZHANG Z, GAO H, GAO P X. Three dimensional koosh ball nanoarchitecture with a tunable magnetic core, fluorescent nanowire shell and enhanced photocatalytic property[J]. J Mater Chem, 2012,22(14):6862-6868. doi: 10.1039/c2jm16489b
JIAN D, GAO P X, CAI W, ALLIMI B S, ALPAY S P, DING Y, BROOKS C. Synthesis, characterization, and photocatalytic properties of ZnO/(La, Sr) CoO3 composite nanorod arrays[J]. J Mater Chem, 2009,19(7):970-975. doi: 10.1039/b817235h
REN Z, BOTU V, WANG S, MENG Y, SONG W, GUO Y, GAO P X. Monolithically integrated spinel MxCo3-xO4 (M=Co, Ni, Zn) nanoarray catalysts:Scalable synthesis and cation manipulation for tunable low-temperature CH4 and CO oxidation[J]. Angew Chem Int Edit, 2014,53(28):7223-7227. doi: 10.1002/anie.201403461
WANG S, WU Y, MIAO R, ZHANG M, LU X, ZHANG B, SIUB S L. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization[J]. Crystengcomm, 2017,19(34):5128-5136. doi: 10.1039/C7CE00921F
YANG P, YAN H, MAO S, RUSSO R, JOHNSON J, SAYKALLY R, CHOI H J. Controlled growth of ZnO nanowires and their optical properties[J]. Adv Funct Mater, 2002,12(5):323-331. doi: 10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-G
GUPTA M, HE J, NGUYEN T, PETZOLD F, FONSECA D, JASINSKI J B, SUNKARA M K. Nanowire catalysts for ultra-deep hydro-desulfurization and aromatic hydrogenation[J]. Appl Catal B:Environ, 2016,180:246-254. doi: 10.1016/j.apcatb.2015.06.029
PETZOLD F G, JASINSKI J, CLARK E L, KIM J, ABSHER J, TOUFAR H, SUNKARA M K. Nickel supported on zinc oxide nanowires as advanced hydrodesulfurization catalysts[J]. Catal Today, 2012,198(1):219-227. doi: 10.1016/j.cattod.2012.05.030
Xiang Qun, Pan Qing-yi, Xu Jian-qiang. Solvothermal synthesis of ZnO nanowires[J]. Chin J Inorg Chem, 2007,23(2):369-372.
LI W J, SHI E W, ZHONG W Z, YIN Z W. Growth mechanism and growth habit of oxide crystals[J]. J Cryst Growth, 1999,203(1):186-196.
KAR S, DEV A, CHAUDHURI S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays[J]. J Phys Chem B, 2006,110(36):17848-17853. doi: 10.1021/jp0629902
ZHANG Z, SHAO C, LI X, WANG C, ZHANG M, LIU Y. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Appl Mat Interfaces, 2010,2(10):2915-2923. doi: 10.1021/am100618h
YADAV R S, PANDEY A C, SANJAY S S. ZnO porous structures synthesized by CTAB-assisted hydrothermal process[J]. Struct Chem, 2007,18(6):1001-1004. doi: 10.1007/s11224-007-9251-1
ZONG Y, LI Z, WANG X, MA J, MEN Y. Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles[J]. Ceram Int, 2014,40(7):10375-10382. doi: 10.1016/j.ceramint.2014.02.123
CASARIN, MACCATO, VITTADINI. An LCAO-LDF study of the chemisorption of H2O and H2S on ZnO(0001) and ZnO(1010)[J]. Surf Sci, 1997,377:587-591.
ZHANG Y, YANG Y, HAN H, YANG M, WANG L, ZHANG Y, LI C. Ultra-deep desulfurization via reactive adsorption on Ni/ZnO:The effect of ZnO particle size on the adsorption performance[J]. Appl Catal B:Environ, 2012,119:13-19.
BABICH I V, MOULIJN J A. Science and technology of novel processes for deep desulfurization of oil refinery streams:A review[J]. Fuel, 2003,82(6):607-631. doi: 10.1016/S0016-2361(02)00324-1
Bing Shen , Tongwei Yuan , Wenshuang Zhang , Yang Chen , Jiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
Xiao-Qi Xu , Yapei Wang . Practice of Cultivating Multi-Disciplinary Talents with Comprehensive Skills through Demand-Driven, Individualized Education, and Humanities and Science Integration. University Chemistry, 2024, 39(6): 90-97. doi: 10.3866/PKU.DXHX202311049
Hui Xiong , Yan Wang , Rongxian Bai , Yongqi Wu , Chengmei Liu , Yuefa Gong , Jian Zhang . Development of a Compound Talent Training System Based on Virtual Technology: a Case Study of Chemical Unit and Process Simulation Practices. University Chemistry, 2024, 39(10): 314-317. doi: 10.12461/PKU.DXHX202405071
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
Qinghong Pan , Huafang Zhang , Qiaoling Liu , Donghong Huang , Da-Peng Yang , Tianjia Jiang , Shuyang Sun , Xiangrong Chen . A self-powered cathodic molecular imprinting ultrasensitive photoelectrochemical tetracycline sensor via ZnO/C photoanode signal amplification. Chinese Chemical Letters, 2025, 36(1): 110169-. doi: 10.1016/j.cclet.2024.110169
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Pengyu Chen , Beibei Chen , Man He , Yuxi Zhou , Lei Lei , Jian Han , Bingsheng Zhou , Ligang Hu , Bin Hu . Nanoplastics and nano-ZnO facilitate Cd accumulation in zebrafish larvae via a distinct pathway: Revelation by LA-ICP-MS imaging. Chinese Chemical Letters, 2025, 36(2): 109908-. doi: 10.1016/j.cclet.2024.109908
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
(a): the solvent was water; (b): the solvent were water and ethanol; (c): the solvent was ethanol
(a): the solvent was water; (b): the solvent were water and ethanol
: the solvent was water; b: the solvent were water and ethanol; c: the solvent was ethanol
a, b, c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent
c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent
c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent
c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent
c: composite NiO-ZnO nanowires adsorbent; d: supported NiO/ZnO nanowires adsorbent; e: pure ZnO nanowires adsorbent