Citation: HU Hai-peng, WANG Xue-tao, ZHANG Xing-yu, SU Xiao-xin, YANG Xiao-dong, SHI Rui-hua. Performance of Fe-Cu/ZSM-5 catalyst in the DeNOx process via NH3-SCR[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 225-232. shu

Performance of Fe-Cu/ZSM-5 catalyst in the DeNOx process via NH3-SCR

  • Corresponding author: WANG Xue-tao, wxt7682@163.com
  • Received Date: 19 November 2017
    Revised Date: 3 January 2018

    Fund Project: Henan Science and Technology Innovation Talent Program (Outstanding Youth) 114100510010The project was supported by the National Natural Science Foundation of China (50806020), Henan Science and Technology Innovation Talent Program (Outstanding Youth) (114100510010) and Science and Technology Project of Science and Technology Department of Henan Province (152102210280)the National Natural Science Foundation of China 50806020Science and Technology Project of Science and Technology Department of Henan Province 152102210280

Figures(10)

  • A series of Fe-Cu/ZSM-5 catalysts with different Fe/Cu molar ratios were prepared by impregnation method and characterized by XRD, H2-TPR, NH3-TPD and in situ DRIFTS; their performance in the denitrification (de-NOx) process via NH3-SCR was investigated.The results showed that the bimetallic modified Fe-Cu/ZSM-5 catalysts have a broad active temperature window.Especially, the Fe-Cu/ZSM-5 1:4 catalyst with a Fe/Cu molar ratio of 1:4 displays the highest activity; over it, the deNOx efficiency reaches the maximum of 99.46% at 335℃ and keeps above 90% at 250-450℃.Copper and iron species, present as amorphous oxides, are finely dispersed on the catalyst surface and the bimetallic modified catalysts retain the crystal structure of ZSM-5.The Fe-Cu/ZSM-5 1:4 catalyst exhibits abundant acid sites and excellent redox performance.E-R mechanism and L-H mechanism may coexist during the NH3-SCR reaction under certain temperature; moreover, the onset temperature of E-R mechanism is much lower than that of L-H mechanism and the denitration reaction may be ignited at 200℃.
  • 加载中
    1. [1]

      MA Teng-kun, FANG Jing-rui, SUN Yong, WANG Lan. Study on the modification effect of TiO2 support on the low temperature denitration activity of Mn-Ce/TiO2 catalysts[J]. J Fuel Chem Technol, 2017,45(4):491-496.  

    2. [2]

      ZHANG Xiang-jun, LIU Xiao-gang, LI Qing-yong, LI Yan, WEI Bo, WANG Hong, LI Cui-qing, SONG Yong-ji. Effect of carrier on the performance of copper based catalyst for selective catalytic reduction of NO with NH3 at low temperature[J]. J Fuel Chem Technol, 2017,45(2):220-226.  

    3. [3]

      ZHANG K K, ZHAO J, ZHU Y C, XU Z H. Model predictive control case study: Selective catalytic reduction (SCR) system in coal-fired power plant[C]. Control Conference, IEEE, 2016: 4300-4305.

    4. [4]

      ZHOU Zi-jian, LIU Xiao-wei, GE Zhen-wu, XIA Yong-jun, LIAO Zhi-qiang, JIANG Meng, SHAO Hai-zhong. NO reduction over a novel SCR catalyst regenerated from deactivated commercial DeNOx catalyst[J]. Proc CSEE, 2017,37(9):2614-2622.

    5. [5]

      QIAO Nan-li, YANG Yi-xin, SONG Huan-qiao, GUO Lin, LUO Ming-sheng. Research status and progresses on NH3-SCR catalysts for low-temperature denitration[J]. Environ Prot Chem Ind, 2017,37(3):282-288.  

    6. [6]

      LIANG Hui, ZHA Xian-bin, GUI Ke-ting. A study of selective catalysis reduction denitration performance and adsorption of NH3 and NO Over Fe2O3 catalyst[J]. Proc CSEE, 2014,34(32):5734-5740.

    7. [7]

      ZHU Yan-tao, Lü Gang, SONG Chong-lin, LI Bo, CHEN Ke. Catalytic oxidation of soot over monovalent copper modified ZSM-5[J]. J Fuel Chem Technol, 2017,45(1):106-112.  

    8. [8]

      LAI S S, SHE Y, ZHAN W C, GUO Y, GUO Y L, WANG L, LU G Z. Performance of Fe-ZSM-5 for selective catalytic reduction of NOx with NH3:Effect of the atmosphere during the preparation of catalysts[J]. J Mol Catal A:Chem, 2016,424:232-240. doi: 10.1016/j.molcata.2016.08.026

    9. [9]

      RUTKOWSKA M, PACIA I, BASAG S, KOWALCZYK A, PIWOWARSKA Z, DUDA M, TARACH K A, GORAMAREK K, MICHALIK M, DIAZ U. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes[J]. Microporous Mesoporous Mater, 2017,246(Supplement C):193-206.  

    10. [10]

      LV Gang, FAN Xiao-tian, SONG Chong-lin, LI Bo, SONG Jin-ou. SCR Catalytic performance of Cu/ZSM-5 catalyst prepared by solid state ion exchange[J]. J Eng Thermophysics, 2015,36(10):2276-2281.  

    11. [11]

      KRISHNA K, MAKKEE M. Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NOx[J]. Catal Today, 2006,114(1):23-30. doi: 10.1016/j.cattod.2006.02.002

    12. [12]

      DU T Y, QU H X, LIU Q, ZHONG Q, MA W H. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR[J]. Chem Eng J, 2015,262:1199-1207. doi: 10.1016/j.cej.2014.09.119

    13. [13]

      SULTANA A, SASAKI M, SUZUKI K, HAMADA H. Tuning the NOx conversion of Cu-Fe/ZSM-5 catalyst in NH3-SCR[J]. Catal Commun, 2013,41:21-25. doi: 10.1016/j.catcom.2013.06.028

    14. [14]

      LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J Phys Chem C, 2010,114(40):16929-1636. doi: 10.1021/jp912163k

    15. [15]

      GÍRA-MAREK K, BRYLEWSKA K, TARACH K A, RUTKOWSKA M, JABLONSKA M, CHOI M, CHMIELARZ L. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes[J]. Appl Catal B:Environ, 2015,179:589-598. doi: 10.1016/j.apcatb.2015.05.053

    16. [16]

      ZHANG T, LIU J, WANG D X, ZHAO Z, WEI Y C, CHENG K, JIANG G Y, DUAN A J. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysts:The Fe-Cu bimetallic effect[J]. Appl Catal B:Environ, 2014,148/149:520-531. doi: 10.1016/j.apcatb.2013.11.006

    17. [17]

      QI G, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005,287(1):25-33. doi: 10.1016/j.apcata.2005.03.006

    18. [18]

      LONG R Q, YANG R T. Temperature-programmed desorption/surface reaction (TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia[J]. J Catal, 2001,198(1):20-28. doi: 10.1006/jcat.2000.3118

    19. [19]

      MU W T, ZHU J, ZHANG S, GUO Y Y, SU L Q, LI X Y, LI Z. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature:Rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTS analysis[J]. Catal Sci Technol, 2016,6(20):7532-7548. doi: 10.1039/C6CY01510G

    20. [20]

      XIA Y, ZHAN W C, GUO Y, GUO LY, LU G Z. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3:Influence of Fe content[J]. Chin J Catal, 2016,37(12):2069-2078. doi: 10.1016/S1872-2067(16)62534-2

    21. [21]

      JIN Q J, SHEN Y S, ZHU S M, LI X H, HU M. Promotional effects of Er incorporation in CeO2(ZrO2)/TiO2 for selective catalytic reduction of NO by NH3[J]. Chin J Catal, 2016,37(9):1521-1529. doi: 10.1016/S1872-2067(16)62450-6

    22. [22]

      YU C L, HUANG B C, DONG L F, CHEN F, YANG Y, FAN Y M, YANG Y X, LIU X Q, WANG X N. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J]. Chem Eng J, 2017,316:1059-1068. doi: 10.1016/j.cej.2017.02.024

    23. [23]

      SONG L Y, ZHAN Z C, LIU X J, HE H, QIU W G, ZI X H. NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts[J]. Chin J Catal, 2014,35(7):1030-1035. doi: 10.1016/S1872-2067(14)60035-8

    24. [24]

      DE LA TORRE U, PEREDA-AYO B, ROMERO-S EZ M, ARANZABAL A, GONZALEZ-MARCOS MP, GONZALEZ-MARCOS J A, GONZALEZ-VELASCO J R. Screening of Fe-Cu-Zeolites prepared by different methodology for application in NSR-SCR combined DeNOx systems[J]. Top Catal, 2013,56(1/8):215-221.

    25. [25]

      SERRA R, VECCHIETTI M J, MIRO E, BOIX A. In, Fe-zeolites:Active and stable catalysts for the SCR of NOx -kinetics, characterization and deactivation studies[J]. Catal Today, 2008,133:480-486.

    26. [26]

      YAN Q H, NIE Y, YANG R Y, CUI Y H, O'HARE D, WANG Q. Highly dispersed CuyAlOx mixed oxides as superior low-temperature alkali metal and SO2 resistant NH3-SCR catalysts[J]. Appl Catal A:Gen, 2017,538:37-50. doi: 10.1016/j.apcata.2017.03.021

    27. [27]

      FENG B J, WANG Z, SUN Y Y, ZHANG C H, TANG SF, LI X B, HUANG X. Size controlled ZSM-5 on the structure and performance of Fe catalyst in the selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2016,80:20-23. doi: 10.1016/j.catcom.2016.02.020

    28. [28]

      YAO X J, MA K L, ZOU W X, HE S G, AN J B, YANG F M, DONG L. Influence of preparation methods on the physicochemical properties and catalytic performance of MnOx -CeO2 catalysts for NH3-SCR at low temperature[J]. Chin J Catal, 2017,38(1):146-159. doi: 10.1016/S1872-2067(16)62572-X

    29. [29]

      XU L, LI X S, CROCKER M, ZHANG Z S, ZHU A M, SHI C. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2[J]. J Mol Catal A:Chem, 2013,378(11):82-90.  

    30. [30]

      SUN M M, WANG S N, LI Y S, WANG Q, XU H D, CHEN Y Q. Promotion of catalytic performance by adding Cu into Pt/ZSM-5 catalyst for selective catalytic oxidation of ammonia[J]. J Taiwan Inst Chem E, 2017,78:401-408. doi: 10.1016/j.jtice.2017.06.045

    31. [31]

      NAM K B, KWON D W, HONG S C. DRIFT study on promotion effects of tungsten-modified Mn/Ce/Ti catalysts for the SCR reaction at low-temperature[J]. Appl Catal A:Gen, 2017,542:55-62. doi: 10.1016/j.apcata.2017.05.017

    32. [32]

      CHEN L Q, NIU X Y, LI Z B, DONG Y L, ZHANG Z P, YUAN F L, ZHU Y J. Promoting catalytic performances of Ni-Mn spinel for NH3-SCR by treatment with SO2 and H2O[J]. Catal Commun, 2016,85:48-51. doi: 10.1016/j.catcom.2016.07.013

    33. [33]

      ZHANG He, ZHOU Yong-gang, PENG Yue. Influence of sulfation on CeO2-ZrO2 catalysts for NO reduction with NH3[J]. Chin J Catal, 2017,38(1):160-167.  

    34. [34]

      LIU J, LI X Y, ZHAO Q D, KE J, XIAO H N, LV X J, LIU S M, TADE M, WANG S B. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ FT-IR analysis for structure-activity correlation[J]. Appl Catal B:Environ, 2017,200:297-308. doi: 10.1016/j.apcatb.2016.07.020

    35. [35]

      WENG X L, DAI X X, ZENG Q S, LIU Y, WU Z B. DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3[J]. J Colloid Interf Sci, 2016,461:9-14. doi: 10.1016/j.jcis.2015.09.004

    36. [36]

      HADJⅡVANOV K I. Identification of neutral and charged Nx Oy surface species by IR spectroscopy[J]. Catal Rev, 2000,42(1/2):71-144.  

  • 加载中
    1. [1]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    2. [2]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    5. [5]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    13. [13]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    14. [14]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    19. [19]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    20. [20]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

Metrics
  • PDF Downloads(12)
  • Abstract views(3442)
  • HTML views(461)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return