Citation: Jieqiong Xiao, Xiaoning Wu, Qian Wang, Yongni Wang, Huairu He. Progress in the Preparation and Catalytic Performance of Transition Metal Phosphides[J]. Chemistry, ;2021, 84(3): 215-224. shu

Progress in the Preparation and Catalytic Performance of Transition Metal Phosphides

  • Corresponding author: Qian Wang, xatutougao@163.com
  • Received Date: 8 October 2020
    Accepted Date: 10 November 2020

Figures(8)

  • Recently, cheap and abundant phosphides have gradually attracted people's attention. Transition metal phosphides (TMPs) are very attractive due to their unique metal-like physical and chemical properties, high conductivity and good catalytic performance. It is widely used in metallurgy, hydroprocessing, electrocatalysis, energy storage, photocatalysis and other fields, becoming one of the hot points in the field of catalytic materials. This article mainly reviews the structural characteristics and commonly used preparation methods of TMPs and the latest developments in their applications in hydrorefining, electrocatalysis and photocatalysis.
  • 加载中
    1. [1]

      Zhao X, He X, Chen B, et al. Appl. Surf. Sci., 2019, 487: 1049~1057. 

    2. [2]

      Diao X, Ji N, Zheng M, et al. J. Energy Chem., 2018, 27(2): 600~610. 

    3. [3]

      Messou D, Vivier L, Especel C, et al. Fuel Proc. Technol., 2018, 177: 159~169. 

    4. [4]

      Li W, Dhandapani B, Oyama S T. Chem. Lett., 1998: 207~208.

    5. [5]

      Maduraiveeran G, Sasidharan M, Jin W. Prog. Mater. Sci., 2019, 106: 100574. 

    6. [6]

      Luong D, Yergeshov A A, Zoughaib M, et al. Mater. Sci. Eng. C, 2019, 103: 109759. 

    7. [7]

      Wen H, Xie S, Cui J, et al. J. Lumin., 2019, 213: 263~272. 

    8. [8]

      Massel F, Ahmadi S, Hahlin M, et al. J. Electron. Spectrosc., 2018, 224: 3~7. 

    9. [9]

      Zhang F, Song H, Song H, et al. J. Taiwan. Inst. Chem. E, 2016, 65: 558~564. 

    10. [10]

      Wei Q, Liu X, Zhou Y, et al. Catal. Today, 2020, 353: 39~46. 

    11. [11]

      Rodríguez-Aguado E, Infantes-Molina A, Ballesteros-Plata D, et al. Catal. Today, 2020, 349: 117~127. 

    12. [12]

      Li S, Zhang Q, Sun J, et al. Mater. Today Energy, 2020, 17: 100464. 

    13. [13]

      Cheng L, Zhang D, Fan J, et al. Appl. Catal. A, 2020, 590: 117336. 

    14. [14]

      Fan M, Chen Y, Xie Y, et al. Adv. Funct. Mater., 2016, 26(28): 5019~5027. 

    15. [15]

      Durai L, Gopalakrishnan A, Badhulika S. J. Electroanal. Chem., 2020, 861: 113937. 

    16. [16]

      Xiao W, Zhang L, Bukhvalov D, et al. Nano Energy, 2020, 70: 104445. 

    17. [17]

      Oyama S T. J. Catal., 2003, 216(1-2): 343~352. 

    18. [18]

      Oyama S T, Gott T, Zhao H, et al. Catal. Today, 2009, 143(1-2): 94~107. 

    19. [19]

      Gao L, Chen S, Zhang H, et al. Int. J. Hydrogen Energ., 2018, 43(30): 13904~13910. 

    20. [20]

      Gao Z, Gao Q, Liu Z, et al. RSC Adv., 2016, 6(115): 114430~114435. 

    21. [21]

      Yang Y, Li J, Lv G, et al. J. Alloy Compd., 2018, 745: 467~476. 

    22. [22]

      Zhou Z, Shi X, Yin J, et al. Chem. Phys. Lett., 2020, 749: 137403. 

    23. [23]

      Song L, Zhang S. Powder Technol., 2011, 208(3): 713~716. 

    24. [24]

      Tang D, Li T, Li C M. Int. J. Hydrogen. Energ., 2019, 44(3): 1720~1726. 

    25. [25]

      Galindo-Ortega Y I, Infantes-Molina A, Huirache-Acuña R, et al. Fuel Proc. Technol., 2020, 208: 106507. 

    26. [26]

      Yang M, Zhu W, Zhao R, et al. J. Solid State Chem., 2020, 288: 121456. 

    27. [27]

      Ranganatha S, Munichandraiah N. Mater. Chem. Phys., 2019, 224: 124~128. 

    28. [28]

      Song H, Gong J, Jiang N, et al. J. Fuel Chem. Technol., 2016, 44(5): 557~563. 

    29. [29]

      Wang Z, Li L, Liu M, et al. J. Energy Chem., 2020, 48: 241~249. 

    30. [30]

      Jin C, Xu C, Chang W, et al. J. Alloy Compd., 2019, 803: 205~215. 

    31. [31]

       

    32. [32]

      Song L, Zhang S, Wei Q. Powder Technol., 2011, 212(2): 367~371. 

    33. [33]

      Dai X, Song H, Yan Z, et al. New J. Chem., 2018, 42: 19917~19923. 

    34. [34]

      Singh A, Chawla P, Jain S, et al. Physica E, 2017, 90: 175~182. 

    35. [35]

      Ahluwalia D, Varshney A, Kumar S, et al. Inorg. Nano-Met. Chem., 2020, DOI:10.1080/24701556.2020.1728551.

    36. [36]

      Jiang N, Jiang B, Wang J, et al. New. J. Chem., 2020, 44(20): 8379~8385. 

    37. [37]

      Usman M, Li D, Razzaq R, et al. J. Ind. Eng. Chem., 2015, 23: 21~26. 

    38. [38]

      Li G, Zhang X, Zhang H. Chem. Eng. J., 2020, 398: 125467. 

    39. [39]

       

    40. [40]

      Pan Z, Wang R, Li M, et al. J. Energy Chem., 2015, 24(1): 77~86. 

    41. [41]

      Zhao S N, Song X Z, Song S Y, et al. Coord. Chem. Rev., 2017, 337: 80~96. 

    42. [42]

      Lee M H, Youn D H, Lee J S. Appl. Catal. A, 2020, 594: 117451. 

    43. [43]

      Zhang J, Matsubara K, Yun G N, et al. Appl. Catal. A, 2017, 548: 39~46. 

    44. [44]

      Tong W, Xie Y, Luo H, et al. Chem. Eng. J., 2019, 378: 122187. 

    45. [45]

      Ma Z C, Chen Q D, Han B, et al. Langmuir, 2018, 34(20): 5712~5718. 

    46. [46]

      Zhang G, Xu Q, Liu Y, et al. Electrochim. Acta, 2020, 332: 135500. 

    47. [47]

      Wang F, Qi X, Qin Z, et al. Int. J. Hydrogen Energ., 2020, 45(24): 13353~13364. 

    48. [48]

      Jing P, Wang Q, Wang B, et al. Ceram. Int., 2019, 45(1): 216~224. 

    49. [49]

      Zhang X, Zhang L, Xu G, et al. J. Colloid Interf. Sci., 2020, 561: 23~31. 

    50. [50]

      d'Aquino A I, Danforth S J, Clinkingbead T R, et al. J. Catal., 2016, 335: 204~214. 

    51. [51]

      Song H, Yu Q, Chen Y, et al. Chin. J. Chem. Eng., 2018, 26(3): 540~544. 

    52. [52]

      Inocêncio C V M, de Souza P M, Rabelo-Neto R C, et al. Catal. Today, 2020. DOI:10.1016/j.cattod.2020.07.077.

    53. [53]

      Ding X, Uddin W, Sheng H, et al. J. Alloy Compd., 2020, 814: 152332. 

    54. [54]

      Lin Y, Zhang M, Zhao L, et al. Appl. Surf. Sci., 2021, 536: 147952. 

    55. [55]

      Hu X, Yin Y, Liu W, et al. Chin. J. Catal., 2019, 40(7): 1085~1092. 

    56. [56]

      Yang M, Jiang Y, Qu M, et al. Appl. Catal. B, 2020, 269: 118803. 

    57. [57]

      He L, Gong L, Gao M, et al. Electrochim. Acta., 2020, 337: 135799. 

    58. [58]

      Xiao J, Zhang Z, Zhang Y, et al. Nano Energy, 2018, 51: 223~230. 

    59. [59]

      Tang J Y, Yang D, Zhou W G, et al. J. Catal., 2019, 370: 79~87. 

    60. [60]

      Yuan Y J, Shen Z K, Song S, et al. ACS Catal., 2019, 9(9): 7801~7807. 

    61. [61]

      Qin Z, Wang M, Li R, et al. Sci. China Mater., 2018, 61(6): 861~868. 

    62. [62]

      Man H, Tsang C, Li M M, et al. Appl. Catal. B, 2019, 242: 186~193. 

    63. [63]

      Li N, Ding Y, Wu J, et al. ACS. Appl. Mater. Inter., 2019, 11(25): 22297~22306. 

    64. [64]

      Sun Z, Zhu M, Lv X, et al. Appl. Catal. B, 2019, 246: 330~336. 

    65. [65]

      Hu B, Yuan J Y, Tian J Y, et al. J. Colloid Interf. Sci., 2018, 531: 148~159. 

    66. [66]

      Farahi E, Memarian N. Chem. Phys. Lett., 2019, 730: 478~484. 

  • 加载中
    1. [1]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    5. [5]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    6. [6]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    7. [7]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    11. [11]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    12. [12]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    13. [13]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    14. [14]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    15. [15]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(289)
  • Abstract views(7863)
  • HTML views(4159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return