Citation: Wang Xuan, Li Kuo, Zheng Haiyan, Zhang Peijie. Chemical Reactions of Molecules under High Pressure[J]. Chemistry, ;2019, 82(5): 387-398. shu

Chemical Reactions of Molecules under High Pressure

  • Corresponding author: Li Kuo, likuo@hpstar.ac.cn
  • Received Date: 3 December 2018
    Accepted Date: 6 February 2019

Figures(7)

  • Under high pressure (1~100 GPa and above), the composition, structure and chemical reaction of matters change significantly, and it is of great significance to understand the chemical reactions under high pressure. In general, molecules solidify under external pressure, unsaturated molecules tend to polymerize to form covalently bonded saturated material with higher density; diffusions of molecules and atoms are significantly restricted, and metastable compounds are often generated; the crystal structure of the reactants, the properties of the functional groups, the temperature and hydrostaticity have significant effects on the reaction. In situ and ex situ crystallography, spectroscopy, chemical characterization, and theoretical calculations are important for the study of the reaction process, and every effort on the synthesis, characterization, theoretical calculation under high pressure is a new step towards the interesting world under extreme condition.
  • 加载中
    1. [1]

      P F Mcmillan. High Pressure Res., 2003, 23(1~2):7~22. 

    2. [2]

      H K Mao, X Chen, Y Ding et al. Rev. Mod. Phys., 2018, 90:015007. 

    3. [3]

      K Matsumoto, A Sera, T Uchida. Synthesis, 1985, 1:1~26. 

    4. [4]

      P W Zhu, Q Tao, L Wang et al. Chin. Phys. B, 2018, 27(7):86~90.

    5. [5]

      Y B Wang, M Rivers, S Sutton et al. Phys. Earth Planet. Int., 2009, 174(5):270~281.

    6. [6]

      J Guignard, W A Crichton. Rev. Sci. Instrum., 2015, 86(8):085112. 

    7. [7]

      T Ishii, L Shi, R Huang et al. Rev. Sci. Instrum., 2016, 87(2):024501. 

    8. [8]

      H K Mao, R J Hemley. Rev. Mineral., 1998, 37:1~32.

    9. [9]

      H K Mao, P M Bell. Carnegie Inst. Yearb., 1978, 77:904.

    10. [10]

      R Boehler, K Hantsetters. High Press. Res., 2004, 24:391. 

    11. [11]

      V Schettino, R Bini. Phys. Chem., 2003, 5(10):1951~1965. 

    12. [12]

      H K Mao, J Xu, P M Bell. Geophys. Res., 1986, 91:4673~4676. 

    13. [13]

      J M Besson, R J Nelmes, G Hamel et al. Physica B, 1992, 180:907~910. 

    14. [14]

      W G Marshall, D J Francis. J. Appl. Crystallogr., 2002, 35:122~125. 

    15. [15]

      Z A Dreger, Y M Gupta. J. Phys. Chem. C, 2007, 111(15):3893~3903. 

    16. [16]

      K R Hirsch, W B Holzapfel. J. Chem. Phys., 1986, 84(5):2771~2775. 

    17. [17]

      J Wu, H Wang, S Xu et al. J. Phys. Chem. A, 2015, 119(8):1303~1308. 

    18. [18]

      M Ceppatelli, M Pagliai, R Bini et al. J. Phys. Chem. C, 2015, 119(1):130~140. 

    19. [19]

      T Yan, K Wang K, X Tan et al. J. Phys. Chem. C, 2014, 118(28):15162~15168. 

    20. [20]

      S Yamanaka, N S Kini, A Kubo et al. J. Am. Chem. Soc., 2008, 130(13):4303~4309. 

    21. [21]

      S Klotz, Th Strässle, B Lebert et al. High Press. Res., 2016, 36(1):1~6.

    22. [22]

      V P Ting, P F Henry, M Schmidtmann et al. Phys. Chem. Chem. Phys. 2012, 14(19):6914~6921. 

    23. [23]

      S Klotz, T Strässle, A M Saitta et al. J. Phys-Condens. Mat. 2005, 17(11):S967~S974. 

    24. [24]

      X Cui, T Hu, J Wang et al. High Press. Res., 2017, 37(5):1680~1682.

    25. [25]

      B Liu, Y Gao, Y Han et al. Phys. Lett. A, 2016, 380(37):2979~2983. 

    26. [26]

      M Li, C Gao. Appl. Phys. Lett., 2007, 90(11):113507~113509. 

    27. [27]

      Y Wang, Y Han, C Gao et al. Rev. Sci. Instrum., 2010, 81(1):013904. 

    28. [28]

      Y A Freiman, H J Jodl. Phys. Rep., 2004, 401:1~228.

    29. [29]

      S Desgreniers, Y K Vohra, A L Ruoff. J. Phys. Chem., 1990, 94:1117~1122. 

    30. [30]

      G Weck, P Loubeyre, R LeToullec. Phys. Rev. Lett., 2002, 88:035504. 

    31. [31]

      L F Lundegaard, G Weck, M I McMahon et al. Nature, 2006, 443:201~204. 

    32. [32]

      J B Neaton, N W Ashcroft. Phys. Rev. Lett., 2002, 88:205503. 

    33. [33]

      K Shimizu, K Suhara, M Ikumo et al. Nature, 1998, 393(393):767~769. 

    34. [34]

      D Plašienka, R Martoňák. J. Chem. Phys., 2015, 142(9):094505. 

    35. [35]

      C Mailhiot, L H Yang, A K McMahan. Phys. Rev. B, 1992, 46:14419. 

    36. [36]

      R L Mills, B Olinger, D T Cromer. J. Chem. Phys., 1986, 84:2837~2845. 

    37. [37]

      M I Eremets, A G Gavriliuk, I A Trojan et al. Nat. Mater., 2004, 3(8):558~563. 

    38. [38]

      W J Evans, M J Lipp, C S Yoo et al. Chem. Mater., 2006, 18:2520~2531. 

    39. [39]

      I G Batyrev. Mater. Res. Soc. Symp. Proc., 2015, 1757(2):39007.

    40. [40]

      M E Kooi, J A Schouten, A M V D Kerkhof et al. Geochim. Cosmochim. Acta, 1998, 62(16):2837~2843. 

    41. [41]

      C Zhu, Q Li, Y Zhou et al. J. Phys. Chem. C, 2014, 118(47):27252~27257. 

    42. [42]

      R H Wentorf Jr. J. Phys. Chem., 1965, 69:3063~3069. 

    43. [43]

      S Block, C E Weir, G J Piermarini. Science, 1970, 169(3945):586~587. 

    44. [44]

      A D Chanyshev, K D Litasov, S V Rashchenko. Crystal Growth Design, 2018, 18(5):3016~3026. 

    45. [45]

      B R. Jackson, C C Trout, J V Badding. Chem. Mater., 2003, 15:1820~1824. 

    46. [46]

      T C Fitzgibbons, M Guthrie, E Xu et al. Nat. Mater., 2015, 14:43~47. 

    47. [47]

      L Ciabini, M Santoro, F A Gorelli et al. Nat. Mater., 2007, 6:39~43. 

    48. [48]

      X D Wen, R Hoffmann, N W Ashcroft. J. Am. Chem. Soc., 2011, 133(23):9023~9035. 

    49. [49]

      Y Wang, X Dong, X Tang et al. Angew. Chem. Int. Ed., 2018, 58(5):1468~1473.

    50. [50]

      K K Zhuravlev, K Traikov, Z Dong et al. Phys. Rev. B, 2010, 82(6):064116. 

    51. [51]

      T Yasuzuka, K Komatsu, H Kagi. Chem. Lett., 2011, 31:110271.

    52. [52]

      X Li, T Wang, P Duan et al. J. Am. Chem. Soc., 2018, 140(15):4969~4972. 

    53. [53]

      S Fanetti, M Citroni, R Bini. J. Chem. Phys., 2011, 134(20):1820~7663.

    54. [54]

      M M Nobrega, M L A Temperini, R Bini. J. Phys. Chem. C, 2017, 121(13):7495~7501. 

    55. [55]

      M M Nobrega, N E Teixeira, A B Cairns et al. Chem. Sci., 2018, 9(1):254~260. 

    56. [56]

      M Santoro, F A Gorelli, R Bini et al. PNAS, 2012, 109(14):5176~5179. 

    57. [57]

      V Iota, C Yoo, J H Klepeis et al. Nat. Mater., 2007, 6:34~38. 

    58. [58]

      K Aoki, B J Baer, H C Cynn et al. Phys. Rev. B, 1990, 42:4298~4303. 

    59. [59]

      H Zheng, K Li, G D Cody et al. Angew. Chem. Int. Ed., 2016, 55:12040~12044. 

    60. [60]

      M Khazaei, Y Liang, N S Venkataramanan et al. Phys. Rev. B, 2012, 85(5):167~172.

    61. [61]

      K Aoki, Y Kakudate, M Yoshida et al. J. Chem. Phys., 1989, 91(2):778~782. 

    62. [62]

      Y Tian, X Xu, Z Zhao. Int. J. Refract. Met. H., 2012, 33:93~106. 

    63. [63]

      A Y Liu, M L Cohen. Science, 1989, 245(4920):841~842. 

    64. [64]

      D M Teter, R J Hemley. Science, 1996, 271(5245):53~55. 

    65. [65]

      L Fang, H Ohfuji, T Shinmei et al. Diam. Relat. Mater., 2011, 20(5~6):819~825. 

    66. [66]

      A Polian, M Grimsditch. Phys. Rev. Lett., 1984, 52(15):1312~1314. 

    67. [67]

      Y Wang, H Liu, J Lv et al. Nat. Commun., 2011, 2(1):563. 

    68. [68]

      K Soderlund, M Heimpel, E King et al. Icarus, 2013, 224:97~113. 

    69. [69]

      C Bellin, A Mafety, C Narayana et al. Phys. Rev. B, 2017, 96:094110. 

    70. [70]

      R Redmer, T R Mattsson, N Nettelmann et al. Icarus, 2011, 211:798~803. 

    71. [71]

      N Nettelmann, R Helled, J Fortney et al. Planet. Space Sci., 2013, 77:143~151. 

    72. [72]

      V N Robinson, Y Wang, Y Ma et al. PNAS, 2017, 114(34):9003~9008. 

    73. [73]

      H Wang, J Zeuschner, M Eremets et al. Sci. Rep., 2016, 6:19902. 

    74. [74]

      A F Goncharov, M R Manaa, J M Zaug et al. Phys. Rev. Lett., 2005, 94(6):065505. 

    75. [75]

      B F Johnston, W G Marshall, S Parsons et al. J. Phys. Chem. B, 2014, 118(14):4044~4051. 

    76. [76]

      I D H Oswald. CrystEngComm, 2011, 13(14):4503~4507. 

    77. [77]

      L Ciabini, M Santoro, F A Gorelli, R Bini et al. Nat. Mater., 2007, 6:39~43. 

    78. [78]

      W Grochala, R Hoffmann, J Feng et al. Angew. Chem. Int. Ed., 2007, 46:3620~3642. 

    79. [79]

      M Ceppatelli, R Bini, M Caporali et al. Angew. Chem. Int. Ed., 2013, 52(8):2313~2317. 

    80. [80]

      M Ceppatelli, S Fanetti, R Bini. J. Phys. Chem. C, 2013, 117(25):13129~13135. 

    81. [81]

      M Citroni, M Ceppatelli, R Bini et al. Science, 2002, 295:2058~2060. 

    82. [82]

      J P Rueff, A Mattila, J Badro et al. J. Phys. Conden. Matter, 2005, 17(11):S717~S726. 

    83. [83]

      Y L Li, W Luo, Z Zeng, HQ Lin et al. PNAS, 2013, 110:9289~9294. 

    84. [84]

      Q Wei, Q Zhang, M Zhang. Materials, 2016, 9(7):570. 

    85. [85]

      H Zheng H, L Wang, Li K et al. Chem. Sci., 2016, 8(1):298~304.

    86. [86]

      I Efthimiopoulos, K Kunc, S Karmakar et al. Phys. Rev. B, 2010, 82(13):557~557.

    87. [87]

      X Q Chen, C L Fu, C Franchini. J. Phys. A, 2010, 22(29):292201. 

    88. [88]

      P Karen, A Kjekshus, Q Huang, V L Karen. Alloys Compd., 1999, 282:72~75. 

    89. [89]

      H Fjellvaag, P Karen. Inorg. Chem., 1992, 31:3260~3263. 

    90. [90]

      Y L Li, S N Wang, A R Oganov et al. Nat. Commun., 2015, 6:6974. 

    91. [91]

      M Schroeder, H Hillebrecht. J. Am. Chem. Soc., 2009, 131:12172~12179. 

    92. [92]

      D Hou, F Zhang, C Ji et al. J. Appl. Phys., 2011, 110(2):023524. 

    93. [93]

      D M Li, P Zhu, Y Wang et al. RSC Adv., 2016, 6:82270~82276. 

    94. [94]

      N Holtgrewe. J. Phys. Chem. C, 2016, 120(49):28176~28185. 

    95. [95]

      J Zhang, Z Zeng, H Q Lin, Y L Li. Sci. Rep., 2014, 4:4358. 

    96. [96]

      H Tang, B Wang, B Gao et al. Adv. Sci., 2018, 5(11):1800666. 

    97. [97]

      W Zhang, A R Oganov, A F Goncharov et al. Science, 2013, 342(6165):1502~1505. 

    98. [98]

      P Loubeyre, M Jean-Louis, R LeToullec et al. Phys. Rev. Lett., 1993, 70:178~181. 

    99. [99]

      H Liu, Y Yao, D D Klug. Phys. Rev. B, 2015, 91:014102. 

    100. [100]

      X Dong, A R Oganov, A F Goncharov et al. Nat. Chem., 2017, 70(a1):440~445. 

    101. [101]

      Z Liu, J Botana, A Hermann et al. Nat. Commun., 2018, 9(1):951. 

    102. [102]

      S B Schneider, R Frankovsky, W Schnick. Angew. Chem. Int. Ed., 2012, 51:1873~1875. 

    103. [103]

      Y Zhang, W Wang, Y Wang et al. J. Am. Chem. Soc. 2017, 139(39):13798~13803. 

    104. [104]

      R LeSar. J. Chem. Phys., 1987, 86:1485~1490. 

    105. [105]

      K Aoki, S Usuba, M Yoshida et al. J. Chem. Phys., 1988, 89:529~534. 

    106. [106]

      K Aoki, Y Kakudate, S Usuba et al. J. Chem. Phys., 1988, 88:4565~4568. 

    107. [107]

      C C Trout, J V Badding. Phys. Chem. A, 2000, 104:8142~8145. 

    108. [108]

      M Ceppatelli, M Santoro, R Bini. Chem. Phys., 2000, 113:5991~6000. 

    109. [109]

      J Sun, X Dong, Y Wang. Angew. Chem. Int. Ed., 2017, 56(23):6553~6557. 

    110. [110]

      H Y Zheng, K Li, G D Cody et al. Angew. Chem. Int. Ed., 2016, 128(39):12219~12223. 

    111. [111]

      N Tian, Y Gao, Y Li et al. Angew. Chem. Int. Ed., 2016, 128:654~658. 

    112. [112]

      L Wang, X Dong, Y Wang et al. J. Phys. Chem. Lett., 2017, 8(17):4241~4245. 

    113. [113]

      X Dong, L Wang, K Li et al. J. Phys. Chem. C, 2018, 122(35):20506~20512. 

  • 加载中
    1. [1]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    2. [2]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    3. [3]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    4. [4]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    5. [5]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    6. [6]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    7. [7]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    8. [8]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    9. [9]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    10. [10]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    11. [11]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    12. [12]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    13. [13]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    14. [14]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    15. [15]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    16. [16]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    17. [17]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    18. [18]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    19. [19]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    20. [20]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

Metrics
  • PDF Downloads(33)
  • Abstract views(2183)
  • HTML views(238)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return