Citation: MEN Nan, BAI Xue, WANG Jing-yun, ZHOU Ming-dong. Degradation of cellulose catalyzed by imidazolium perrhenate[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(12): 1449-1455. shu

Degradation of cellulose catalyzed by imidazolium perrhenate

  • Corresponding author: WANG Jing-yun, jingyun.wang@lnpu.edu.cn
  • Received Date: 14 June 2017
    Revised Date: 16 October 2017

    Fund Project: Research Project Fund of Liaoning Provincial Department of Education L2017LFW011Talent Scientific Research Fund of LSHU 2016XJJ-063The project was supported by the Natural Science Foundation of Liaoning Province (20170540590), Research Project Fund of Liaoning Provincial Department of Education(L2017LFW011) and Talent Scientific Research Fund of LSHU (2016XJJ-063) for the Financial Supportsthe Natural Science Foundation of Liaoning Province 20170540590

Figures(6)

  • Imidazolium perrhenate was applied as the catalyst to promote the degradation of microcrystalline cellulose (MCC) with the solvent of ionic liquid 1-allyl-3-methyl imidazolium chloride ([Amim]Cl). The effects of reaction temperature, reaction time, reactant concentration, the amount and structure of catalyst on the degradation of cellulose were studied in details. When using 5% of [mim-(CH2)3SO3H]ReO4, 70μL of water, 0.1g cellulose and 2.0g [Amim]Cl under microwave irradiation for 30min at 160℃, 89.6% of total reducing sugar (TRS) and 46.7% of glucose yield can be obtained. The degradation mechanism of cellulose catalyzed by imidazolium perrhenate was also studied.The hydrogen bonding between hydroxyl groups of cellulose and ReO4 anion and aromatic ring cation of catalyst is assumed to be the key step for depolymerization of cellulose.
  • 加载中
    1. [1]

      ZHAO Bo, HU Shang-lian, GONG Dao-yong, LI Hui-ping. New advances on hydrolysis of cellulose to glucose by solid acid[J]. Chem Ind Eng Prog, 2017,36(2):555-567.  

    2. [2]

      SHEN Shu-guang, LI Huan-mei, WANG Tao, CAI Bei, QIN Hai-feng, WANG Chun-yan. Effect of coal rank on structure of coal-based solid acids and their catalytic performance in cellulose hydrolysis[J]. J Fuel Chem Technol, 2013,41(12):1466-1472.  

    3. [3]

      KIM S J, DWIATMOKO A A, CHOI J W, SUH Y W, SUH D J, OH M. Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solidacid-catalyzed hydrolysis[J]. Bioresour Technol, 2010,101(21):8273-8279. doi: 10.1016/j.biortech.2010.06.047

    4. [4]

      LAI D M, DENG L, Li J, LIAO B, GUO Q X, FU Y. Hydrolysis of cellulose into glucose by magnetic solid acid[J]. ChemSusChem, 2011,4(1):55-58. doi: 10.1002/cssc.v4.1

    5. [5]

      ONDA A, OCHI T, YANAGISAWA K. Selective hydrolysis of cellulose into glucose over solid acid catalysts[J]. Green Chem, 2008,10(10):1033-1037. doi: 10.1039/b808471h

    6. [6]

      FENG Jian-ping, LIU Min, JIA Song-yan, GONG Yan-yan, SONG Chun-shan, GUO Xin-wen. Effectively catalytic hydrolysis of cellulose to glucose in the presence of pyrrolidonium-based acidic ionic liquids[J]. Acta Pet Sin(Pet Process Sect), 2012,28(5):775-782.  

    7. [7]

      AMARASEKARA A S, OWEREH O S. Hydrolysis and decomposition of cellulose in Brønsted acidic ionic liquids under mild conditions[J]. Ind Eng Chem Res, 2009,48(22):10152-10155. doi: 10.1021/ie901047u

    8. [8]

      LONG J X, GUO B, TENG J J, LI X H. SO3H-functionalized ionic liquid:Efficient catalyst for bagasse liquefaction[J]. Bioresour Technol, 2011,102(21):10114-10123. doi: 10.1016/j.biortech.2011.08.043

    9. [9]

      JIANG Feng, MA Ding, BAO Xin-he. Acid ionic liquid catalyzed hydrolysis of cellulose[J]. Chin J Catal, 2009,30(4):279-283.  

    10. [10]

      BEATTIE I R, JONES P J. Methyltrioxorhenium. An air-stable compound containing a carbon-rhenium bond[J]. Inorg Chem, 1979,18(8):2318-2319. doi: 10.1021/ic50198a056

    11. [11]

      HERRMANN W A, FISCHER R W, MARZ D W. Methyltrioxorhenium als katalysator für die olefin-oxidation[J]. Angew Chem, 1991,103(12):1706-1709. doi: 10.1002/(ISSN)1521-3757

    12. [12]

      JAIN K R, KVHN F E. Immobilization of organorhenium (Ⅶ) oxides[J]. J Organomet Chem, 2007,692(25):5532-5540. doi: 10.1016/j.jorganchem.2007.09.015

    13. [13]

      KVHN F E, SCHERBAUM A, HERRMANN W A. Methyltrioxorhenium and its applications in olefin oxidation, metathesis and aldehyde olefination[J]. J Organomet Chem, 2004,689(24):4149-4164. doi: 10.1016/j.jorganchem.2004.08.018

    14. [14]

      HOU J L, CHEN Y, MA D M, CORDES B, WANG J Y, WANG X, KVHN F E, GUO H, ZHOU M D. Methyltrioxorhenium-catalyzed highly selective dihydroxylation of 1, 2-allenylic diphenyl phosphine oxides[J]. Chem Commun, 2015,51(35):7439-7442. doi: 10.1039/C5CC01160D

    15. [15]

      WANG J Y, ZHOU M D, YUAN Y G, ZHANG Q, FANG X C, ZANG S L. Hydrolysis of cellulose catalyzed by quaternary ammonium perrhenates in 1-allyl-3-methylimidazolium chloride[J]. Bioresour Technol, 2015,197:42-47. doi: 10.1016/j.biortech.2015.07.110

    16. [16]

      YUAN Y G, WANG J Y, FU N H, ZANG S L. Hydrolysis of cellulose in 1-allyl-3-methylimidazolium chloride catalyzed by methyltrioxorhenium[J]. Catal Commun, 2016,76:46-49. doi: 10.1016/j.catcom.2015.12.024

    17. [17]

      MARKOVITS I I E, EGER W A, YUE S, COKOJA M, MüNCHMEYER C J, ZHANG B., ZHOU M D, GENEST A, MINK J, ZANG S L, RÖSCH N, KVHN F E. Activation of hydrogen peroxide by ionic liquids:Mechanistic studies and application in the epoxidation of olefins[J]. Chem Eur J, 2013,19:5972-5979. doi: 10.1002/chem.201203208

    18. [18]

      MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Anal Chem, 1959,31(3):426-428. doi: 10.1021/ac60147a030

    19. [19]

      ZHANG Qiang, YU Peng-qiu, LI Lin, LE Zhi-ping. Preparation of 5-HMF from cellulose catalyzed by SnCl4 under microwave in ZnCl2 solution[J]. J Fuel Chem Technol, 2017,45(3):317-322.  

    20. [20]

      MOULTHROP J S, SWATLOSKI R P, MOYNA G, ROGERS R D. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions[J]. Chem Commun, 2005(12):1557-1559. doi: 10.1039/b417745b

    21. [21]

      REMSING R C, SWATLOSKI R P, ROGERS R D, MOYNA G. Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride:A 13C and 35/37Cl NMR relaxation study on model systems[J]. Chem Commun, 2006(12):1271-1273. doi: 10.1039/b600586c

    22. [22]

      ZHANG J M, ZHANG H, WU J, ZHANG J, XIANG J F. NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids[J]. Phys Chem Chem Phys, 2010,12(8):1941-1947. doi: 10.1039/b920446f

    23. [23]

      JIA L Y, PEDERSEN C M, QIAO Y, DENG T S, ZUO P P, GE W Z, QIN Z F, HOU X L, WANG Y X. Glucosamine condensation catalyzed by 1-ethyl-3-methylimidazolium acetate:Mechanistic insight from NMR spectroscopy[J]. Phys Chem Chem Phys, 2015,17:23173-23182. doi: 10.1039/C5CP02169C

    24. [24]

      WANG Ying-xiong, HOU Xiang-lin, ZHU Yu-lei. The catalytic conversion of sugar derivatives to oxygen containing liquid fuel and fine chemicals[J]. Biotechnol Business, 2017,3(5):48-55.  

    25. [25]

      HU R, LIN L, LIU T J, LIU S J. Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure[J]. Bioresour Technol, 2010,101(10):3586-3594. doi: 10.1016/j.biortech.2010.01.005

    26. [26]

      ZHANG B, LI S, YUE S, COKOJA M, ZHOU M D, ZANG S L, KVHN F E. Imidazolium perrhenate ionic liquids as efficient catalysts for the selective oxidation of sulfides to sulfones[J]. J Organomet Chem, 2013,744:108-112. doi: 10.1016/j.jorganchem.2013.05.043

  • 加载中
    1. [1]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    2. [2]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    5. [5]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    10. [10]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    13. [13]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    15. [15]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    16. [16]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    17. [17]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    18. [18]

      Chunyang Bao Ruoxuan Miao Yuhan Ding Qingfu Ban Yusheng Qin Jie Liu Zhirong Xin . The Comprehensive Experiment Design of Preparation of Depolymerizable Thermosetting Polymers. University Chemistry, 2025, 40(4): 59-65. doi: 10.12461/PKU.DXHX202405087

    19. [19]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

Metrics
  • PDF Downloads(0)
  • Abstract views(2815)
  • HTML views(1190)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return