Citation: Li Wenhui, Wu Hongli, Huang Ting, Deng Ru, Cao Fei, Wei Ping. Preparation of Levoglucosan and Its Applications in Biotechnology[J]. Chemistry, ;2017, 80(3): 251-259. shu

Preparation of Levoglucosan and Its Applications in Biotechnology

  • Corresponding author: Cao Fei, csaofeiw@njtech.edu.cn
  • Received Date: 16 June 2016
    Accepted Date: 15 November 2016

Figures(7)

  • Levoglucosan is a potential source of sugar, it can be hydrolyzed into glucose and then used for microbial fermentation, or be directly metabolized through levoglucosan kinase or levoglucosan dehydrogenase in some fungi and bacteria. It showed a good application prospect in the fermentation field. In addition, levoglucosan can also be used as a carbon source to produce bio-ethanol, succinic acid and so on. At present, biomass pyrolysis is the common-use preparation method of levoglucosan. However, this method has the disadvantages of high energy consumption, low yield and difficult to extract the product. In order to improve the yield of levoglucosan, we should strive to develop a method of decomposing cellulose in solvent system. Future researches should focus on the development new processes, new methods, and new strains for microbial metabolism of levoglucosan, which could lay the groundwork for the efficient use of levoglucosan.
  • 加载中
    1. [1]

      S Czernik, A Bridgwater. Energy Fuels, 2004, 18(2):590-598. 

    2. [2]

      M Chuang, C K Chou, K Sopajaree et al. Atmosph. Environ., 2013, 78:72-81. 

    3. [3]

      E Hopmans, R L Santos, A Mets et al. Org. Geochem., 2013, 58:86-88. 

    4. [4]

      N Kehrwald, R Zangrando, P Gabrielli et al. Tellus B, 2012, 64:1-9.

    5. [5]

      Y Tsai, K Sopajaree, A Chotruksa et al. Atmosph. Environ., 2013, 78:93-104. 

    6. [6]

      K Vancampenhout, B Vos, K Wouters et al. Soil Biol. Biochem., 2012, 50:40-46. 

    7. [7]

      P Wallner, M Kundi, H Moshammer et al. Int. J. Hyg. Environ. Health, 2013, 216(3):280-283. 

    8. [8]

      T B Jordan, A J Seen, G E Jacobsen. Atmosph. Environ., 2006, 40(27):5316-5321. 

    9. [9]

      J T Overpeck. Nature, 1992, 356(6371):670-670.

    10. [10]

      A Vicente, C Alves, A I Calvo et al. Atmosph. Environ., 2013, 71:295-303. 

    11. [11]

      N M Bennett, S S Helle, S J B Duff. Bioresour. Technol., 2009, 100(23):6059-6063. 

    12. [12]

      X Hu, L Wu, Y Wang et al. Green Chem., 2012, 14(11):3087-3098. 

    13. [13]

      X L Zhuang, H X Zhang, J J Tang. Biomass Bioenergy, 2001, 21(1):53-60. 

    14. [14]

      Y Zhao, Y Chen, H Sun et al. Acta Microbiol. Sin., 2014, 54(7):821-827.

    15. [15]

      Z Yu, J Ning, L Zhang et al. Chin. Agr. Sci. Bull., 2011, 27(6):342-349.

    16. [16]

      J R Klesmith, J Bacik, R Michalczyk et al. ACS Synth. Biol., 2015, 4(11):1235-1243. 

    17. [17]

      E Kim, Y Um, M Bott et al. FEMS Microbiol. Lett., 2015, 362(19):1-6.

    18. [18]

      J Dai, Z Yu, Y He et al. World J. Microbiol. Biotechnol., 2009, 25(9):1589-1595. 

    19. [19]

      D Chang, Z Yu, Z Islam et al. Appl. Microbiol. Biotechnol., 2015, 99(9):4093-4105. 

    20. [20]

      S Kersten, M Perez. Curr. Opin. Biotechnol., 2013, 24(3):414-420. 

    21. [21]

      A V Bridgwater, D Meier, D Radlein. Org. Geochem., 1999, 30(12):1479-1493. 

    22. [22]

      A V Bridgwater. Biomass Bioenergy, 2012, 38:68-94. 

    23. [23]

      C A Mullen, A A Boateng. Energy Fuels, 2008, 22(3):2104-2109. 

    24. [24]

      T Hosoya, S Sakaki. ChemSusChem, 2013, 6(12):2356-2368. 

    25. [25]

      X Zhang, J Li, W Yang et al. Energy Fuels, 2011, 25(8):3739-3746. 

    26. [26]

      X Zhang, W Yang, W Blasiak. J. Anal. Appl. Pyrolysis, 2012, 96:110-119. 

    27. [27]

      X Zhang, W Yang, W Blasiak. Fuel, 2012, 96(1):383-391.

    28. [28]

      X Zhang, W Yang, W Blasiak. Fuel, 2013, 109:476-483. 

    29. [29]

      X Zhang, W Yang, C Dong. J. Anal. Appl. Pyrolysis, 2013, 104:19-27. 

    30. [30]

      X Bai, P Johnston, S Sadula et al. J. Anal. Appl. Pyrolysis, 2013, 99:58-65. 

    31. [31]

      A Zheng, Z Zhao, Z Huang et al. Green Chem., 2015, 17(2):1167-1175. 

    32. [32]

      L K Tolonen, M Juvonen, K Niemela et al. Carbohydr. Res., 2015, 401:16-23. 

    33. [33]

      J Piskorz, D S Radlein, D S Scott et al. J. Anal. Appl. Pyrolysis, 1989, 16(2):127-142. 

    34. [34]

      B Pecha, P Arauzo, M Garcia-Perez. J. Anal. Appl. Pyrol., 2015, 114:127-137. 

    35. [35]

      S R G Oudenhoven, R J M Westerhof, N Aldenkamp et al. J. Anal. Appl. Pyrol., 2013, 103:112-118. 

    36. [36]

      E Le Roux, M Chaouch, P N Diouf et al. Biomass Bioenergy, 2015, 81:202-209. 

    37. [37]

      S Kumagai, R Matsuno, G Grause et al. Bioresour. Technol., 2015, 178:76-82. 

    38. [38]

      L Jiang, A Zheng, Z Zhao et al. Bioresour. Technol., 2015, 182:364-367. 

    39. [39]

      H Xia, X Yan, S Xu et al. J. Chem., 2015, 2015:1-11.

    40. [40]

      G Kwon, S Kuga, K Hori et al. J. Wood Sci., 2006, 52(5):461-465. 

    41. [41]

      G Kwon, D Kim, S Kimura et al. J. Anal. Appl. Pyrol., 2007, 80(1):1-5. 

    42. [42]

      Z Yang, X Liu, Z Yang et al. J. Anal. Appl. Pyrol., 2013, 102:83-88. 

    43. [43]

      P R Patwardhan, J A Satrio, R C Brown et al. J. Anal. Appl. Pyrol., 2009, 86(2):323-330. 

    44. [44]

      X Bai, P Johnston, R C Brown. J. Anal. Appl. Pyrol., 2013, 99:130-136. 

    45. [45]

      Q Li, P H Steele, F Yu et al. J. Anal. Appl. Pyrol., 2013, 100:33-40. 

    46. [46]

      A Pictet, J Sarasin. HeIv. Chim. Acta, 1918, 1(1):87-96. 

    47. [47]

      F Shafizadeh, T T Stevenson. J. Appl. Polym. Sci., 1982, 27(12):4577-4585. 

    48. [48]

      M J Antal, J G Varhegyi. Ind. Eng. Chem. Res., 1995, 34(3):703-717. 

    49. [49]

      C Blasi. Chem. Eng. Sci., 2000, 55(24):5999-6013. 

    50. [50]

      J P Diebold. Biomass Bioenergy, 1994, 7(1):75-85.

    51. [51]

      J Lédé. J. Anal. Appl. Pyrol., 2012, 94:17-32. 

    52. [52]

      I Milosavljevic, E M Suuberg. Ind. Eng. Chem. Res., 1995, 34(4):1081-1091. 

    53. [53]

      A R Teixeira, K G Mooney, J S Kruger et al. Energy Environ. Sci., 2011, 4(10):4306-4321. 

    54. [54]

      N Kuzhiyil, D Dalluge, X Bai et al. ChemSusChem, 2012, 5(11):2228-2236. 

    55. [55]

      F Cao, T J Schwartz, D J Mcclelland et al. Energy Environ. Sci., 2015, 8(6):1808-1815. 

    56. [56]

      M Ohara, A Takagaki, S Nishimura et al. Appl. Catal. A-Gen., 2010, 383(1-2):149-155. 

    57. [57]

      C R Vitasari, G W Meindersma, A B Haan. Bioresour. Technol., 2011, 102(14):7204-7210. 

    58. [58]

      A V Bridgwater, G V C Peacocke. Renew. Sust. Energ. Rev., 2000, 4(1):1-73. 

    59. [59]

      A Oasmaa, Y Solantausta, V Arpiainen et al. Energy Fuels, 2010, 24:1380-1388. 

    60. [60]

      F Zeng, W Liu, H Jiang et al. Bioresour. Technol., 2011, 102(2):1982-1987. 

    61. [61]

      R H Venderbosch, W Prins. Biofuel. Bioprod. Bior., 2010, 4(2):178-208. 

    62. [62]

      D Mohan, C U Pittman, P H Steele. Energy Fuels, 2006, 20(3):848-889. 

    63. [63]

      J K S Chan, S J B Duff. Bioresour. Technol., 2010, 101(10):3755-3759. 

    64. [64]

      H Wang, D Livingston, R Srinivasan et al. Appl. Biochem. Biotechnol., 2012, 168(6):1568-1583. 

    65. [65]

      Y Zhang, T R Brown, G Hu et al. Bioresour. Technol., 2013, 127:358-365. 

    66. [66]

      M Nakagawa, Y Sakai, T Yasui. J. Ferment. Technol., 1984, 62(2):201-203.

    67. [67]

      Z S Yu, H X Zhang. Bioresour. Technol., 2003, 90(1):95-100. 

    68. [68]

      J Lian, S Chen, S Zhou et al. Bioresour. Technol., 2010, 101(24):9688-9699. 

    69. [69]

      D Santhanaraj, M R Rover, D E Resasco et al. ChemSusChem, 2014, 7(11):3132-3137. 

    70. [70]

      Z S Yu, H X Zhang. Bioresour. Technol., 2004, 93(2):199-204. 

    71. [71]

      Z S Yu, H X Zhang. Biomass Bioenergy, 2003, 24(3):257-262. 

    72. [72]

      J P Bacik, J R Klesmith, T A Whitehead et al. J. Biol. Chem., 2015, 290(44):26638-26648. 

    73. [73]

      Y Kitamura, T Yasui. Agr. Biol. Chem., 1991, 55(2):523-529.

    74. [74]

      D S Layton, A Ajjarapu, D W Choi et al. Bioresour. Technol., 2011, 102(17):8318-8322. 

    75. [75]

      K Nakahara, Y Kitamura, Y Yamagishi et al. Biosci. Biotechnol. Biochem., 1994, 58(12):2193-2196. 

    76. [76]

      Z Ul Islam, Z Yu, E B Hassan et al. J. Ind. Microbiol. Biotechnol., 2015, 42(12):1557-1579. 

    77. [77]

      S Helle, N M Bennett, K Lau et al. Carbohydr. Res., 2007, 342(16):2365-2370. 

    78. [78]

      X L Zhuang, H X Zhang. Protein Expres. Purif., 2002, 26(1):71-81. 

    79. [79]

      Y Kitamura, Y Abe, T Yasui. Agr. Biol. Chem., 1991, 55(2):515-521.

    80. [80]

      H Xie, X Zhuang, Z Bai et al. World J. Microbiol. Biotechnol., 2006, 22(9):887-892. 

    81. [81]

      P Phitsuwan, K Sakka, K Ratanakhanokchai. Biomass Bioenergy, 2013, 58:390-405. 

    82. [82]

      L R Jarboe, Z Wen, D Choi et al. Appl. Microbiol. Biotechnol., 2011, 91(6):1519-1523. 

    83. [83]

      P Galletti, F Moretti, C Samori et al. Green Chem., 2007, 9(9):987-991. 

    84. [84]

      M Kaldstrom, N Kumar, T Heikkila et al. ChemCatChem, 2010, 2(7):717-717. 

    85. [85]

      K Hattori, T Yoshida, H Nakashima et al. Carbohydr. Polym., 1998, 312(1-2):1-8.

    86. [86]

      E M Prosen, D Radlein, J Piskorz et al. Biotechnol. Bioeng., 1993, 42(4):538-541. 

    87. [87]

      A E Farrell, R J Plevin, B T Turner et al. Science, 2006, 311(5760):506-508. 

    88. [88]

      E Waltz. Nat. Biotechnol., 2008, 26(1):8-9. 

    89. [89]

      Z Chi, M Rover, E Jun et al. Bioresour. Technol., 2013, 150:220-227. 

    90. [90]

      L Luque, R Westerhof, G Van Rossum et al. Bioresour. Technol., 2014, 161:20-28. 

    91. [91]

      B Sukhbaatar, Q Li, C Wan et al. Bioresour. Technol., 2014, 161:379-384. 

    92. [92]

      H Alper, G Stephanopoulos. Nat. Rev. Microbiol., 2009, 7(10):715-723. 

    93. [93]

      J Ning, Z Yu, H Xie et al. World J. Microbiol. Biotechnol., 2008, 24(1):15-22. 

  • 加载中
    1. [1]

      Zhonghan Xu Yuejia Li Kin Shing Chan . 碳中和新旅程. University Chemistry, 2025, 40(6): 167-171. doi: 10.12461/PKU.DXHX202407075

    2. [2]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    3. [3]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    4. [4]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    7. [7]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    20. [20]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

Metrics
  • PDF Downloads(48)
  • Abstract views(6243)
  • HTML views(2745)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return