Citation: WANG Rui-yi, LIU Huan, ZHENG Zhan-feng. Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1486-1494. shu

Low temperature light-assisted hydrogen production from aqueous reforming ethylene glycol over Pt/Al2O3 and Pd/Al2O3 catalysts

  • Corresponding author: ZHENG Zhan-feng, zfzheng@sxicc.ac.cn
  • Received Date: 16 October 2019
    Revised Date: 7 November 2019

    Fund Project: the the Shanxi Science and Technology Department 2015081044The project was supported by the the Shanxi Science and Technology Department (2015081044)

Figures(8)

  • Al2O3 supported Pt and Pd nanoparticle catalysts were prepared by impregnation-reduction method, and employed in the photocatalytic aqueous-phase reforming of ethylene glycol. Light illumination can decrease the reaction activation energy remarkably. Pt/Al2O3 exhibits much higher H2 turnover frequency (TOF) and lower CO selectivity than Pd/Al2O3 catalyst. Their morphology and structure were characterized by XRD, TEM, UV-vis techniques. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) indicates light can promote the cleavage of O-H bonds of ethylene glycol molecule. DFT calculation suggests the lower CO selectivity over Pt/Al2O3 catalyst can be attributed to the low energy barriers of reaction in the step of CO+O→CO2.
  • 加载中
    1. [1]

      TURNER J A. Sustainable hydrogen production[J]. Science, 2004,305(5686):972-974. doi: 10.1126/science.1103197

    2. [2]

      KUEHNEL M F, REISNER E. Solar hydrogen generation from lignocellulose[J]. Angew Chem Int Ed, 2018,57(13):3290-3296. doi: 10.1002/anie.201710133

    3. [3]

      LINDSTROM B, PETTERSSON L J. Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications[J]. Int J Hydrogen Energy, 2001,26(9):923-933. doi: 10.1016/S0360-3199(01)00034-9

    4. [4]

      CORTRIGHT R D, DAVDA R R, DUMESIC J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water[J]. Nature, 2002,418(6901):964-967. doi: 10.1038/nature01009

    5. [5]

      LIU Yang, ZHU Shan-hui, LI Jun-fen, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous phase reforming of methanol to hydrogen[J]. J Fuel Chem Technol, 2019,47(7):799-805. doi: 10.3969/j.issn.0253-2409.2019.07.004 

    6. [6]

      ZHANG Lei, PAN Li-wei, NI Chang-jun, ZHAO Sheng-sheng, WANG Shu-dong, HU Yong-kang, WANG An-jie, JIANG Kai. Catalytic performance of bimetallic PtCo supported on nanosheets MoS2 in aqueous phase reforming of methanol to hydrogen[J]. J Fuel Chem Technol, 2013,41(1):116-122. doi: 10.3969/j.issn.0253-2409.2013.01.019 

    7. [7]

      VADYA P D, LOPZE-SANCHEZ J A. Review of hydrogen production by catalytic aqueous-phase reforming[J]. Chemistryselect, 2017,2(22):6563-6576. doi: 10.1002/slct.201700905

    8. [8]

      CORONADO I, STEKROVA M, RENⅡKAINEN M, SIMELL P, LEFFERTS L, LEHTONEN J. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions[J]. Int J Hydrogen Energy, 2016,41(26):11003-11032. doi: 10.1016/j.ijhydene.2016.05.032

    9. [9]

      XIONG H, DELARIVA A, WANG Y, DATYE A. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts[J]. Catal Sci Technol, 2015,5(1):254-263.  

    10. [10]

      CORONADO I, STEKROVA M, MORENO L G, REINIKANINEN M, SIMELL P, KARINEN R, LEHTONEN J. Aqueous-phase reforming of methanol over nickel-based catalysts for hydrogen production[J]. Biomass Bioenergy, 2017,106:29-37. doi: 10.1016/j.biombioe.2017.08.018

    11. [11]

      HUBER G W, DUMESIC J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery[J]. Catal Today, 2006,111(1):119-132.  

    12. [12]

      SARINA S, ZHU H, XIAO Q, JAATINEN E, JIA J, HUANG Y, ZHENG Z, WU H. Viable photocatalysts under solar-spectrum irradiation:Nonplasmonic metal nanoparticles[J]. Angew Chem Int Ed, 2014,53(11):2935-2940. doi: 10.1002/anie.201308145

    13. [13]

      TANA T, GUO X, XIAO Q, HUANG Y, SARINA S, CHRISTOPHER P, JIA J, WU H, ZHU H. Non-plasmonic metal nanoparticles as visible light photocatalysts for the selective oxidation of aliphatic alcohols with molecular oxygen at near ambient conditions[J]. Chem Commun, 2016,52(77):11567-11570. doi: 10.1039/C6CC05186C

    14. [14]

      GUO X, JIAO Z, JIN G, GUO X. Photocatalytic fischer-tropsch synthesis on graphene-supported worm-like ruthenium nanostructures[J]. ACS Catal, 2015,5(6):3836-3840. doi: 10.1021/acscatal.5b00697

    15. [15]

      LIU H T, DAO D, LIU L, MENG X, NAGAO T, YE J. Light assisted CO2 reduction with methane over group VⅢ metals:Universality of metal localized surface plasmon resonance in reactant activation[J]. Appl Catal B:Environ, 2017,209:183-189. doi: 10.1016/j.apcatb.2017.02.080

    16. [16]

      PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    17. [17]

      LIU H, WU Z, WANG R, DONG M, WANG G, QIN Z, Ma J, HUANG Y, WANG J, FAN W. Structural and electronic feature evolution of Au-Pd bimetallic catalysts supported on graphene and SiO2 in H2 and O2[J]. J Catal, 2019,376:44-56. doi: 10.1016/j.jcat.2019.06.049

    18. [18]

      HENKELMAN G, JONSSON H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J Chem Phys, 2000,113(22):9978-9985. doi: 10.1063/1.1323224

    19. [19]

      HENKELMAN G, UBERUAGA B P, JONSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys, 2000,113(22):9901-9904. doi: 10.1063/1.1329672

    20. [20]

      ZHU T, LI J, YIP S. Atomistic study of dislocation loop emission from a crack tip[J]. Phys Rev Lett, 2004,93(2)025503. doi: 10.1103/PhysRevLett.93.025503

    21. [21]

      WANG Y, WANG G. A systematic theoretical study of water gas shift reaction on Cu(111) and Cu(110):Potassium effect[J]. ACS Catal, 2019,9(3):2261-2274. doi: 10.1021/acscatal.8b04427

    22. [22]

      LIU Z, UANG Y, XIAO Q, ZHU H. Selective reduction of nitroaromatics to azoxy compounds on supported Ag-Cu alloy nanoparticles through visible light irradiation[J]. Green Chem, 2016,18(3):817-825. doi: 10.1039/C5GC01726B

    23. [23]

      XIAO Q, LIU Z, BO A, ZAVAHIR S, SARINA S, BOTTLE S, RICHES J D, ZHU H. Catalytic transformation of aliphatic alcohols to corresponding esters in O2 under neutral conditions using visible-light irradiation[J]. J Am Chem Soc, 2015,137(5):1956-1966. doi: 10.1021/ja511619c

    24. [24]

      HAO C H, GUO X N, PAN Y T, CHEN S, JIAO Z F, YANG H, GUO X Y. Visible-light-driven selective photocatalytic hydrogenation of cinnamaldehyde over Au/SiC catalysts[J]. J Am Chem Soc, 2016,138(30):9361-9364. doi: 10.1021/jacs.6b04175

    25. [25]

      LINIC S, ASLAM U, BOERIGTER C, MORABITO M. Photochemical transformations on plasmonic metal nanoparticles[J]. Nat Mater, 2015,14(6):567-576. doi: 10.1038/nmat4281

    26. [26]

      LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nat Mater, 2011,10(12):911-921. doi: 10.1038/nmat3151

    27. [27]

      LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W, ZHENG S, JIANG Z, YU Q, LI Y, SHI C, WEN X, MA D. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017,544(7648):80-83. doi: 10.1038/nature21672

    28. [28]

      OCHOA J V, TREVISANUT C, MILLET J M, BUSCA G, CAVANI F. In situ DRIFTS-MS study of the anaerobic oxidation of ethanol over spinel mixed oxides[J]. J Phy Chem C, 2013,117(45):23908-23918. doi: 10.1021/jp409831t

    29. [29]

      CESAR D V, SANTORI G F, POMPEO F, BALDANZA M A, HENRIQUES C A, LOMBAEDO E, SCHMAL M, CORNAGLIA L, NICHIO N N. Hydrogen production from ethylene glycol reforming catalyzed by Ni and Ni-Pt hydrotalcite-derived catalysts[J]. Int J Hydrogen Energy, 2016,41(47):22000-22008. doi: 10.1016/j.ijhydene.2016.07.168

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    8. [8]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    12. [12]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    17. [17]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(5)
  • Abstract views(540)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return