Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar
- Corresponding author: GUO Xing-mei, linyrain@163.com ZHAO Liang-fu, lfzhao@sxicc.ac.cn
Citation:
GUO Xing-mei, SONG Mao-ning, ZHAO Xu, ZHAO Liang-fu. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(11): 1326-1333.
HAN C R.Hydrocracking Technology and Engineering[M].Beijing:China Petrochemical Press, 2006:1-27.
LEI Z, HU D N, PAN H T, LU J Y. Research progress of coal tar catalytic hydrogenation[J]. Mod Chem Ind, 2014,34(1):30-35.
CHEN T N, GE X J, MA J. Hydrogenation process of medium & low temperature coal tar[J]. Fuel Chem Process, 2013,44(4):52-57.
YU Y C, GAO H Y, ZHANG M N, QIAO S. Research progress of coal tar hydrogenation catalyst[J]. Ind Prod, 2016,42(2):137-143.
ZHANG K Y, LIU A H, YAN J, GUO J X, LIU C G. Characterization of CoMo/Al2O3 hydrodesulfurization catalysts prepared by different methods[J]. Chin J Catal, 2005,26(8):639-644.
ZHENG A G, FANG S L, ZHANG J, CHEN W B, XU G T. The characterization of NiMo/Al2O3 hydrotreating catalyst by TEM and AEM[J]. Acta Petrol Sin, 2008,24(4):433-437.
WANG Y G, ZHANG H Y, ZHANG P Z, XU D P, ZHAO K, WANG F J. Hydroprocessing of low temperature coal tar on NiW/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2012,40(12):1492-1497.
WANG W Y, YANG Y Q, LUO H, PENG H Z, ZHANG X Z, HU T. Preparation and hydrodeoxygenation properties of Ni-Co-W-B amorphous catalyst[J]. Chin J Catal, 2011,32(10):1645-1650.
WANG H Y, SONG P P, WANG Y J. Influence of hierarchically mesoporous H βzeolite on the performance of NiWP/H β-Al2O3 catalysts in diesel oil hydro-upgrading[J]. J Fuel Chem Technol, 2016,44(4):470-476.
MAITY S K, LEMUS M, ANCHEYTA J. Effect of preparation methods and content of boron on hydrotreating catalytic activity[J]. Energy Fuels, 2011,25:3100-3107. doi: 10.1021/ef2004915
QU L L, JIAN M, SHI Y H, LI D D. Effect of Fluorine on sulfide type NiW/γ-Al2O3 catalyst[J]. Chin J Catal, 1998,19(6):608-609.
JIRFITOVFI K, KRANS M. Effect of support properties on the catalytic activity of HDS catalysts[J]. Appl Catal, 1986,27(1):21-29. doi: 10.1016/S0166-9834(00)81043-X
MATRALIS H K, LYCOURGHIOTIS A, GRANGE P, DELMON B. Fluorinated hydrotreatment catalysts:Characterization and hydrode-sulphurization activity of fluorine-cobalt-molybdenum/γ-alumina catalysts[J]. Appl Catal, 1988,38(2):273-287. doi: 10.1016/S0166-9834(00)82831-6
SARBAK Z, ANDERSSON S L T. Effect of metal-organic compounds on thiophene hydrodesulphurization over sulphided forms of fluoride-containing CoMo/Al2O3 catalysts[J]. Appl Catal, 1991,69(1):235-251. doi: 10.1016/S0166-9834(00)83305-9
BENITEZ A, RAMIREZ J, FIERRO J L G, AGUDO A. Effect of fluoride on the structure and activity of NiW/Al2O3 catalysts for HDS of thiophene and HDN of pyridine[J]. Appl Catal, 1996,144(1/2):343-364.
LI B, SHAO L L. Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorg Chem Ind, 2008,40(2):54-57.
CUI G Q, WANG J F, FAN H F, SUN X Y, JIANG Y, WANG S J, LIU D, GUI J Z. Towards understanding the microstructures and hydrocracking performance of sulfided Ni-W catalysts:Effect of metal loading[J]. Fuel Process Technol, 2011,92(12):2320-2327. doi: 10.1016/j.fuproc.2011.07.020
EBRAHIMYNEJAD M, HAGHIGHI M, ASGARI N. Ultrasound assisted synthesis and physicochemical characterizations of fluorine-modified CoMo/Al2O3 nanocatalysts used for hydrodesulfurization of thiophene[J]. J Nanosci Nanotechnol, 2014,14(9):6848-6857. doi: 10.1166/jnn.2014.8966
DING L H, ZHENG Y, ZHANG Z S. Hydrotreating of light cycle oil using WNi catalysts containing hydrothermally and chemically treated zeolite Y[J]. Catal Today, 2007,125(3):229-238.
NIU G X, CHEN H Y, LI Q Z. The effect of treatment of ammonium fluosilicate on NiW/γ-Al2O3[J]. Chin J Catal, 1997,18(4):279-283.
CORMA A, FORNES V, ORTEGA E. The nature of acid sites on fluorinated γ-Al2O3[J]. Chin J Catal, 1985,92(2):284-290. doi: 10.1016/0021-9517(85)90262-3
MICIUKIEWICZ J. Studies of molybdena-alumina catalysts:XV.Effect of fluorine-modified alumina on catalyst properties[J]. Appl Catal, 1989,49(2):247-257. doi: 10.1016/S0166-9834(00)83021-3
BENITEZ A, RAMIREZ J, VAZQUEZ A. Influence of alumina fluoridation on the dispersion and hydrotreating activity of W/Al2O3 catalysis[J]. Appl Catal A:Gen, 1995,133(1):103-119. doi: 10.1016/0926-860X(95)00177-8
MENG X X, QIU Z G, GUO X M, LI Z R, HU N F, SONG M N, ZHAO L F. Hydrodenitrogenation and hydrodesulfurization of coal tar on Ni-W catalysts with different metal loadings[J]. J Fuel Chem Technol, 2016,44(5):570-578.
EGOROVA M, PRINS R. Competitive hydrodesulfurization of 4, 6-dimethyl dibenzothiophene, hydrodenitrogenation of 2-methylpyridine and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3[J]. J Catal, 2004,224(2):278-287. doi: 10.1016/j.jcat.2004.03.005
JIAN M, PRINS R. Existence of different catalytic sites in HDN catalysts[J]. Catal Today, 1996,30(1/3):127-134.
Yang Li , Yanan Dong , Zhihong Wei , Changzeng Yan , Zhen Li , Lin He , Yuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Renshu Huang , Jinli Chen , Xingfa Chen , Tianqi Yu , Huyi Yu , Kaien Li , Bin Li , Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Cailiang Yue , Nan Sun , Yixing Qiu , Linlin Zhu , Zhiling Du , Fuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
a: NiWF (0.00)/γ-Al2O3; b: NiWF (0.05)/γ-Al2O3; c: NiWF (0.10)/γ-Al2O3; d: NiWF (0.20)/γ-Al2O3; e: NiWF (0.50)/γ-Al2O3; f: NiWF (0.75)/γ-Al2O3; g: NiWF (1.00)/γ-Al2O3
a: NiWF (0.00)/γ-Al2O3; b: NiWF (0.05)/γ-Al2O3; c: NiWF (0.10)/γ-Al2O3; d: NiWF (0.20)/γ-Al2O3; e: NiWF (0.50)/γ-Al2O3; f: NiWF (0.75)/γ-Al2O3; g: NiWF (1.00)/γ-Al2O3
a: NiWF (0.00)/γ-Al2O3; b: NiWF (0.05)/γ-Al2O3; c: NiWF (0.10)/γ-Al2O3; d: NiWF (0.20)/γ-Al2O3; e: NiWF (0.50)/γ-Al2O3; f: NiWF (0.75)/γ-Al2O3; g: NiWF (1.00)/γ-Al2O3
(a): NiWF (0.00)/γ-Al2O3; (b): NiWF (0.05)/γ-Al2O3; (c): NiWF (0.10)/γ-Al2O3; (d): NiWF (0.20)/γ-Al2O3; (e): NiWF (0.50)/γ-Al2O3; (f): NiWF (0.75)/γ-Al2O3; (g): NiWF (1.00)/γ-Al2O3
(reaction conditions: t=380 ℃, p=8.0 MPa, LHSV=0.3 h-1, H2/oil=1 500)