Citation: GUO Xing-mei, SONG Mao-ning, ZHAO Xu, ZHAO Liang-fu. Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1326-1333. shu

Effect of fluoride promoter on the catalytic activity of NiWF/γ-Al2O3 for hydrodenitrogenation and hydrodesulfurization of coal tar

  • Corresponding author: GUO Xing-mei, linyrain@163.com ZHAO Liang-fu, lfzhao@sxicc.ac.cn
  • Received Date: 18 August 2016
    Revised Date: 21 September 2016

    Fund Project: The project was supported by the Strategic Science and Technology Project of Chinese Academy of Sciences XDA07020200the Development of Gasification Coal Tar Hydrogenation Furnace of Luqi CFBYKJ-JSFW-01-2014

Figures(8)

  • A series of NiWF (x)/γ-Al2O3 catalysts were prepared by adding different amounts of ammonium fluoride, and the effects of fluoride amount on the structure and physicochemical properties were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, NH3-TPD and high resolution transmission electron mcroscopy (HRTEM) techniques and N2 sorption experiment. Their hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) catalytic performances were evaluated in a fix-bed reactor with low and middle-temperature coal tar obtained from Inner Mongolia as feedstock. Although fluoride amount has little effect on the pore diameter and pore volume of the catalysts, increase of the fluoride amount decreases the specific surface area. In addition, the sulfidation degree of the catalyst decreases with the fluoride amount when it is sulfided at 643 K for 6 h. Also, the numbers of strong acid sites and total amount acid sites change with increasing fluoride amount. They slightly increase at first, but then obviously decrease. HRTEM shows that WS2 slabs have a typical layered structure. The catalytic activity of NiWF (x)/γ-Al2O3 for HDN and HDS of coal tar shows a volcanic trend with the fluoride amount.
  • 加载中
    1. [1]

      HAN C R.Hydrocracking Technology and Engineering[M].Beijing:China Petrochemical Press, 2006:1-27.

    2. [2]

      LEI Z, HU D N, PAN H T, LU J Y. Research progress of coal tar catalytic hydrogenation[J]. Mod Chem Ind, 2014,34(1):30-35.  

    3. [3]

      CHEN T N, GE X J, MA J. Hydrogenation process of medium & low temperature coal tar[J]. Fuel Chem Process, 2013,44(4):52-57.  

    4. [4]

      YU Y C, GAO H Y, ZHANG M N, QIAO S. Research progress of coal tar hydrogenation catalyst[J]. Ind Prod, 2016,42(2):137-143.  

    5. [5]

      ZHANG K Y, LIU A H, YAN J, GUO J X, LIU C G. Characterization of CoMo/Al2O3 hydrodesulfurization catalysts prepared by different methods[J]. Chin J Catal, 2005,26(8):639-644.  

    6. [6]

      ZHENG A G, FANG S L, ZHANG J, CHEN W B, XU G T. The characterization of NiMo/Al2O3 hydrotreating catalyst by TEM and AEM[J]. Acta Petrol Sin, 2008,24(4):433-437.

    7. [7]

      WANG Y G, ZHANG H Y, ZHANG P Z, XU D P, ZHAO K, WANG F J. Hydroprocessing of low temperature coal tar on NiW/γ-Al2O3 catalyst[J]. J Fuel Chem Technol, 2012,40(12):1492-1497.  

    8. [8]

      WANG W Y, YANG Y Q, LUO H, PENG H Z, ZHANG X Z, HU T. Preparation and hydrodeoxygenation properties of Ni-Co-W-B amorphous catalyst[J]. Chin J Catal, 2011,32(10):1645-1650.  

    9. [9]

      WANG H Y, SONG P P, WANG Y J. Influence of hierarchically mesoporous H βzeolite on the performance of NiWP/H β-Al2O3 catalysts in diesel oil hydro-upgrading[J]. J Fuel Chem Technol, 2016,44(4):470-476.  

    10. [10]

      MAITY S K, LEMUS M, ANCHEYTA J. Effect of preparation methods and content of boron on hydrotreating catalytic activity[J]. Energy Fuels, 2011,25:3100-3107. doi: 10.1021/ef2004915

    11. [11]

      QU L L, JIAN M, SHI Y H, LI D D. Effect of Fluorine on sulfide type NiW/γ-Al2O3 catalyst[J]. Chin J Catal, 1998,19(6):608-609.

    12. [12]

      JIRFITOVFI K, KRANS M. Effect of support properties on the catalytic activity of HDS catalysts[J]. Appl Catal, 1986,27(1):21-29. doi: 10.1016/S0166-9834(00)81043-X

    13. [13]

      MATRALIS H K, LYCOURGHIOTIS A, GRANGE P, DELMON B. Fluorinated hydrotreatment catalysts:Characterization and hydrode-sulphurization activity of fluorine-cobalt-molybdenum/γ-alumina catalysts[J]. Appl Catal, 1988,38(2):273-287. doi: 10.1016/S0166-9834(00)82831-6

    14. [14]

      SARBAK Z, ANDERSSON S L T. Effect of metal-organic compounds on thiophene hydrodesulphurization over sulphided forms of fluoride-containing CoMo/Al2O3 catalysts[J]. Appl Catal, 1991,69(1):235-251. doi: 10.1016/S0166-9834(00)83305-9

    15. [15]

      BENITEZ A, RAMIREZ J, FIERRO J L G, AGUDO A. Effect of fluoride on the structure and activity of NiW/Al2O3 catalysts for HDS of thiophene and HDN of pyridine[J]. Appl Catal, 1996,144(1/2):343-364.

    16. [16]

      LI B, SHAO L L. Appraisal of alumina and aluminium hydroxide by XRD[J]. Inorg Chem Ind, 2008,40(2):54-57.  

    17. [17]

      CUI G Q, WANG J F, FAN H F, SUN X Y, JIANG Y, WANG S J, LIU D, GUI J Z. Towards understanding the microstructures and hydrocracking performance of sulfided Ni-W catalysts:Effect of metal loading[J]. Fuel Process Technol, 2011,92(12):2320-2327. doi: 10.1016/j.fuproc.2011.07.020

    18. [18]

      EBRAHIMYNEJAD M, HAGHIGHI M, ASGARI N. Ultrasound assisted synthesis and physicochemical characterizations of fluorine-modified CoMo/Al2O3 nanocatalysts used for hydrodesulfurization of thiophene[J]. J Nanosci Nanotechnol, 2014,14(9):6848-6857. doi: 10.1166/jnn.2014.8966

    19. [19]

      DING L H, ZHENG Y, ZHANG Z S. Hydrotreating of light cycle oil using WNi catalysts containing hydrothermally and chemically treated zeolite Y[J]. Catal Today, 2007,125(3):229-238.  

    20. [20]

      NIU G X, CHEN H Y, LI Q Z. The effect of treatment of ammonium fluosilicate on NiW/γ-Al2O3[J]. Chin J Catal, 1997,18(4):279-283.

    21. [21]

      CORMA A, FORNES V, ORTEGA E. The nature of acid sites on fluorinated γ-Al2O3[J]. Chin J Catal, 1985,92(2):284-290. doi: 10.1016/0021-9517(85)90262-3

    22. [22]

      MICIUKIEWICZ J. Studies of molybdena-alumina catalysts:XV.Effect of fluorine-modified alumina on catalyst properties[J]. Appl Catal, 1989,49(2):247-257. doi: 10.1016/S0166-9834(00)83021-3

    23. [23]

      BENITEZ A, RAMIREZ J, VAZQUEZ A. Influence of alumina fluoridation on the dispersion and hydrotreating activity of W/Al2O3 catalysis[J]. Appl Catal A:Gen, 1995,133(1):103-119. doi: 10.1016/0926-860X(95)00177-8

    24. [24]

      MENG X X, QIU Z G, GUO X M, LI Z R, HU N F, SONG M N, ZHAO L F. Hydrodenitrogenation and hydrodesulfurization of coal tar on Ni-W catalysts with different metal loadings[J]. J Fuel Chem Technol, 2016,44(5):570-578.  

    25. [25]

      EGOROVA M, PRINS R. Competitive hydrodesulfurization of 4, 6-dimethyl dibenzothiophene, hydrodenitrogenation of 2-methylpyridine and hydrogenation of naphthalene over sulfided NiMo/γ-Al2O3[J]. J Catal, 2004,224(2):278-287. doi: 10.1016/j.jcat.2004.03.005

    26. [26]

      JIAN M, PRINS R. Existence of different catalytic sites in HDN catalysts[J]. Catal Today, 1996,30(1/3):127-134.  

  • 加载中
    1. [1]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    2. [2]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    3. [3]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Junhua WangXin LianXichuan CaoQiao ZhaoBaiyan LiXian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180

    9. [9]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    10. [10]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    15. [15]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    16. [16]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    17. [17]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    18. [18]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    19. [19]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(0)
  • Abstract views(377)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return