Citation: LI Yan, HUANG Jun, LIN Fa-wei, SHAO Jia-ming, WANG Zhi-hua, XIANG Bai-xiang. Study on the activity and mechanism of selective catalytic reduction of NO with NH3 over MnαTi1-α catalyst at medium-low temperatures[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(1): 91-99. shu

Study on the activity and mechanism of selective catalytic reduction of NO with NH3 over MnαTi1-α catalyst at medium-low temperatures

  • Corresponding author: HUANG Jun, 21027076@zju.edu.cn
  • Received Date: 13 August 2019
    Revised Date: 15 November 2019

    Fund Project: The project was supported by the National Basic Research Program of China (2018YFB0604203)the National Basic Research Program of China 2018YFB0604203

Figures(10)

  • MnαTi1-α catalysts for selective catalytic reduction (SCR) of NO were prepared with impregnation method and their denitration activity and SO2 resistance at medium-low temperature were evaluated. The catalysts were characterized using BET, XRD, XPS, NH3-TPD and H2-TPR. The results showed that the temperature range of the highest denitration activity of MnαTi1-α catalyst shifted to the lower temperature zone along with the increase of MnOx loading. The denitration efficiency of Mn0.1Ti0.9 catalyst reached over 80% at 200-385 ℃. SO2 could bring down denitration activity of MnαTi1-α catalyst greatly and resulted in irreversible deactivation. The specific surface area of the catalyst first increased then slightly decreased with the increase of Mnx loading. Both Mn4+ peak area in H2-TPR and surface chemical adsorbed oxygen increased along with the increase of MnOx loading. All these factors were beneficial to the proceeding of NH3-SCR reaction at low temperature. With the increase of MnOx loading, the acid sites of MnαTi1-α catalyst increased and the reduction peak at low temperature appeared, indicating that MnαTi1-α catalyst had good redox performance at medium and low temperature.
  • 加载中
    1. [1]

      YANG Z Q, LI H L, LIU X, LI P, YANG J P, LEE P H, SHIH K. Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation[J]. Fuel, ,227:79-88. doi: 10.1016/j.fuel.2018.04.074

    2. [2]

      QIU K Z, SONG J, SONG H, GAO X, LUO Z Y, CEN K F. A novel method of microwave heating mixed liquid-assisted regeneration of V2O5-WO3/TiO2 commercial SCR catalysts[J]. Environ Geochem Health, 2015,37(5):905-914. doi: 10.1007/s10653-014-9663-y

    3. [3]

      MA Zi-ran, LIN De-hai, MA Shao-dan, MA Jing, SUN Qi, LI Yong-long, XU Wen-qiang, WANG Bao-dong. Deactivation mechanism and regeneration of SCR catalyst used in 600MW unit of coal fired power plant[J]. Chin J Environ Eng, 2018,12(6):1702-1712.  

    4. [4]

      LI Yan, LIU Yi, WANG Peng, HAN Tao, YU Xue-hai, ZHAO Rui, LIAO Hai-yan. Application research on Zn-W/TiO2 SCR catalyst with wide operation temperature window to the coal-fired flue gas[J]. Environ Energy, 2018,36(11):89-93.  

    5. [5]

      YANG Y R, WANG M H, TAO Z L, LIU Q, FEI Z Y, CHEN X, ZHANG Z X, TANG J H, CUI M F, QIAO X. Mesoporous Mn-Ti amorphous oxides: A robust low-temperature NH3-SCR catalyst[J]. Catal Sci Technol, 2018,8(24):6396-6406. doi: 10.1039/C8CY01313F

    6. [6]

      YAN Dong-jie, LI Ya-jing, YU Ya, HUANG Xue-min, ZHOU Wei-ke, LIU Ying-hui. Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature[J]. J Fuel Chem Technol, 2018,46(12):1513-1519.  

    7. [7]

      MU W T, ZHU J, ZHANG S, GUO Y Y, SU L Q, LI X Y, LI Z. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis[J]. Catal Sci Technol, 2016,6(20):7532-7548. doi: 10.1039/C6CY01510G

    8. [8]

      DU Xue-sen. An experimental and theoretical study on the anti-poisoning of the titania-based SCR catalyst[D]. Hangzhou: Zhejiang University, 2014. 

    9. [9]

      WEI L, CUI S P, GUO H X, ZHANG L J. The effect of alkali metal over Mn/TiO2 for low-temperature SCR catalyst of NO with NH3 through DRIFT and DFT[J]. Comput Mater Sci, 2018,144:216-222. doi: 10.1016/j.commatsci.2017.12.013

    10. [10]

      PARK E, KIM M, JUNG H, CHIN S, JURNG J. Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction[J]. ACS Catal, 2013,3(7):1518-1525. doi: 10.1021/cs3007846

    11. [11]

      PAPPAS D K, BONINGARI T, BOOLCHAND P, SMIRNIOTIS P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3[J]. J Catal, 2016,334:1-13. doi: 10.1016/j.jcat.2015.11.013

    12. [12]

      CHEN J Y, ZHU B Z, SUN Y L, YIN S L, ZHU Z C, LI J X. Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Mn-modified Fe2O3/AC catalysts[J]. J Braz Chem Soc, 2018,29(1):79-87.

    13. [13]

      GAO F Y, TANG X L, YI H H, ZHAO S Z, WANG J E, GU T. Improvement of activity, selectivity and H2O & SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx[J]. Appl Surf Sci, 2019,466:411-424. doi: 10.1016/j.apsusc.2018.09.227

    14. [14]

      QU L, LI C T, ZENG G M, ZHNAG M Y, FU M F, MA J F, ZHAN F M, LUO D Q. Support modification for improving the performance of MnOx-CeOy/gamma-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chem Eng J, 2014,242:76-85. doi: 10.1016/j.cej.2013.12.076

    15. [15]

      LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Appl Catal A: Gen, 2016,522:54-69. doi: 10.1016/j.apcata.2016.04.023

    16. [16]

      ZHOU Jia-li, WANG Bao-dong, MA Jing, LI Ge, SUN Qi, XU Wen-qiang, LI Yong-long. SO2 and H2O poisoning resistance of manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx[J]. Environ Chem, 2018,37(4):782-791.  

    17. [17]

      QU L, LI C T, ZENG G M, ZHANG M Y, FU M F, MA J F, ZHAN F M, LUO D Q. Support modification for improving the performance of MnOx-CeOy/gamma-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chem Eng J, 2014,242:76-85. doi: 10.1016/j.cej.2013.12.076

    18. [18]

      YANG Chao, CHENG Hua, HUANG Bi-chun. Review of deNOx catalysts with SO2 and H2O poisoning resistance for low-temperature NH3-SCR[J]. Chem Ind Eng Prog, 2014,33(4):907-913.  

    19. [19]

      LIU Z, YANG Y, MI J H, TAN X L, SONG Y. Synthesis of copper-containing ordered mesoporous carbons for selective hydrogenation of cinnamaldehyde[J]. Catal Commun, 2012,21:58-62. doi: 10.1016/j.catcom.2012.01.024

    20. [20]

      CHEN X, XU X, FEI Z Y, XIE X X, LOU J W, TANG J H, CUI M F, QIAO X. CeO2 nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl ocidation[J]. Catal Sci Technol, 2016,6(13):5116-5123. doi: 10.1039/C5CY02300A

    21. [21]

      HUANG Jin, ZHONG Zhao-ping, ZHU Lin, XUE Jian-ming, XU Yue-yang, WU Pei-ting. DeNOx performance and resistance to H2O and SO2 of Mn-Ce doped V-W/Ti catalyst at middle-low temperature[J]. Chem Ind Eng Prog, 2018,37(6):2242-2248.  

    22. [22]

      LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. J Fuel Chem Technol, 2017,45(12):1508-1513.  

    23. [23]

      HU Yu-feng, XUE Jian-ming, WANG Xiao-ming, SHENG Zhong-yi, LIAO Wei-ping. Research on characteristics of SO2-poison and regeneration of Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction[J]. Ind Catal, 2013,21(4):27-33. doi: 10.3969/j.issn.1008-1143.2013.04.006

    24. [24]

      DELIMARIS D, LOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B: Environ, 2008,84(12):303-312.  

    25. [25]

      KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007,327(2):261-269. doi: 10.1016/j.apcata.2007.05.024

    26. [26]

      LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009,93(12):194-204.  

    27. [27]

      VENKATASWAMY P, RAO K N, JAMPAIAH D, REDDY B M. Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures[J]. Appl Catal B: Environ, 2015,162:122-132. doi: 10.1016/j.apcatb.2014.06.038

    28. [28]

      SANTOS V P, PEREIRA M F R, ORFAO J J M, FIGUEIREDO J L. The role of lattice oxygen on activity of mangnese oxides towards the oxidation of volatile organic compounds[J]. Appl Catal B: Environ, 2010,99(1/2):353-363.  

    29. [29]

      WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001

    30. [30]

      ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Cataly B: Environ, 2007,76(1/2):123-134.  

  • 加载中
    1. [1]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    4. [4]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    7. [7]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    8. [8]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    18. [18]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    19. [19]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(8)
  • Abstract views(2228)
  • HTML views(307)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return