Citation: HONG Xin, TANG Ke, DING Shi-hong. Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 99-105. shu

Preparation and deep adsorption denitrification from diesel oil of heteroatoms mesoporous molecular sieve Co-MCM-41

  • Corresponding author: TANG Ke, tangke0001@163.com
  • Received Date: 18 September 2015
    Revised Date: 7 November 2015

    Fund Project: The project was supported by the Liaoning Provincial Natural Science Foundation of China 2014020113

Figures(6)

  • The mesoporous molecular sieves MCM-41 and Co-MCM-41 containing different cobalt contents were prepared by hydrothermal synthesis method with cobalt nitrate as cobalt source and characterized using X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and nitrogen adsorption. The characterization results indicate that the well-ordered mesostructure was obtained even when the Co/Si mol ratio was 0.1 and Co has been introduced into the framework of MCM-41. Adsorption removal of basic nitrogen compounds from 0# diesel oil was studied by static stirring method using MCM-41 and Co-MCM-41. One gram of Co-MCM-41(2) could adsorb 5.324 mg nitrogen from diesel oil while MCM-41 could adsorb 2.532 mg, indicating that the adsorptive denitrification of Co-MCM-41(2) has been enhanced pronouncedly. But the adsorptive denitrification capacity of Co-MCM-41(2) decreased when the Co/Si exceeded 0.06, which could be ascribed to the addition of exceeded Co into the frameworks of MCM-41. The Co was well dispersed in the channel of Co-MCM-41 as Co3O4 and blocked the adsorption active sites which hindered the adsorption between the nitrogen compounds and active sites and depressed the adsorptive denitrification capacity. The results of adsorptive denitrification from diesel oil using dynamic adsorption method showed that for a breakthrough point of 10 μg/g, the breakthrough volume and breakthrough capacity of Co-MCM-41(2) at ambient conditions are 35 mL/g-adsorbent and 4.2 mg-nitrogen/g adsorbent, respectively. For MCM-41, both of the two data were almost zero, indicating that MCM-41 almost lost all the adsorptive denitrification capacity due to the shorter contact time and implying that Co-MCM-41(2) had better selectivity on basic nitrogen compounds in 0# diesel oil.
  • 加载中
    1. [1]

      DHEER S, ANJU C, MITRA B P, AMARJIT S S. A comparative evaluation of nitrogen compounds in petroleum distillates[J]. Chromatographia, 2011,74(1/2):121-126.  

    2. [2]

      JVRGEN B, JVRGEN K, ANDREAS W O S, THOMAS B, MICHAEL M E H, GÖTZ W. Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions[J]. Arch Toxicol, 2006,80(8):540-546. doi: 10.1007/s00204-006-0088-y

    3. [3]

      LIU K, FLORA T T. Effect of the nitrogen heterocyclic compounds on hydrodesulfurization using in situ hydrogen and a dispersed Mo catalyst[J]. Catal Today, 2010,149(1/2):28-34.  

    4. [4]

      HANAFI S A, MOHAMED M S. Recent trends in the cleaning of diesel fuels via desulfurization processes[J]. Energy Sources Part A, 2011,33(6):495-511. doi: 10.1080/15567030903058360

    5. [5]

      ZHU Jin-zhu, SHEN Jian. Adsorption of basic nitrogen compounds from oil by SBA-15 zeolite[J]. Acta Pet Sin (Pet Process Sect), 2012,40(11):566-570.  

    6. [6]

      ZHU Jin-zhu, SHEN Jian, HAN Ying. Preparation and adsoparation denitrication of Nb-SBA-15 zeolite[J]. J Chin Ceram Soc, 2012,40(11):1666-1670.  

    7. [7]

      HONG Xin, TANG Ke. Modification and adsorptive denitrification of NaY molecular sieve[J]. J Fuel Chem Technol, 2015,43(2):1-7.  

    8. [8]

      ZHAI Yu-long, SHEN Jian. Study on the adsorption of basic nitrogen compounds from oil with HY molecular sieve[J]. Pet Process Petrochem, 2011,42(1):41-44.  

    9. [9]

      WANG Fu-shuai, LI Hui-peng, ZHAO Hua, FANG Bin-bin. Modification of NaY/β composite molecular sieve and its adsorption performance of removing nitrogen containing compounds in model oil[J]. Pet Process Petrochem, 2012,43(11):59-62.  

    10. [10]

      WANG Yun-fang, CHI Zhi-ming. Research on nitrogen adsorption removal performance of mesoporous molecular sieve Al-MCM-41[J]. Petrochem Technol Appl, 2014,32(2):113-117.  

    11. [11]

      CHI Zhi-ming. Basic research of Al-MCM-41 molecular sieve for denitrogenation of diese oil[D]. Beijing: China University of Petroleum, 2010.

    12. [12]

      ZHANG Han. Adsorptive removal of nitrogen-containing compounds from fuel[D]. Dalian: Dalian University of Technology, 2009.

    13. [13]

      HONG Xin, TANG Ke. Preparation and adsorption denitrification of heteroatoms mesoporous molecular sieve Co-MCM-41[J]. J Fuel Chem Technol, 2015,43(6):720-727.  

    14. [14]

      LUAN Z H, XU J, HE H Y, JACEK K, LARRY K. Synthesis and spectroscopic characterization of vanadosilicate mesoporous MCM-41 molecular sieves[J]. J Phys Chem, 1996,100(50):19595-1960. doi: 10.1021/jp962353j

    15. [15]

      LI Ya-nan. Synthesis, characterization and catalytic activity of Me-MCM-41 for oxidative dehydrogenation of ethane to ethylene with CO2[D]. Changchun: Jilin University, 2006. 

    16. [16]

      PARVULESCU V, SU B L. Iron, cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons[J]. Catal Today, 2001,69(1/4):315-322.  

    17. [17]

      ARAUJO A S, JARONIEC M. Synthesis and properties of Lanthanide incorporated mesoporous molecular sieves[J]. J Colloid Interface Sci, 1999,218(2):462-467. doi: 10.1006/jcis.1999.6437

    18. [18]

      ZHAO Q, WANG Q, TANG Y J, JIANG T S, LI CS, YIN H B. Characterization and synthesis of Ce-incorporated mesoporous molecular sieves under microwave irradiation condition[J]. Korean J Chem Eng, 2010,27(4):1310-1315. doi: 10.1007/s11814-010-0182-y

    19. [19]

      ZHAO Qian, HU Xiao-xiao, ZHANG Rong-xian, LI Mei, JIANG Ting-shun. Stability and hydrothermal synthesis of Co-MCM-41 mesoporous molecular sieves[J]. Chin J Nonferrous Met, 2009,19(1):189-194.  

    20. [20]

      ZHANG Yan, LI Xiang-qi, CHEN Qiong-xia, TANG De-ping. Microwave synthesis of ordered mesoporous Co-MCM-41[J]. Chem Ind Times, 2008,22(2):12-15.  

    21. [21]

      JIANG T S, SHEN W, ZHAO Q, LI M, CHU J Y, YIN H B. Characterization of CoMCM-41 mesoporous molecular sieves obtained by the microwave irradiation method[J]. J Solid State Chem, 2008,181(9):2298-2305. doi: 10.1016/j.jssc.2008.05.010

    22. [22]

      LI Ya-nan, GUO Xiao-dong, ZHOU Guang-dong, BI Ying-li, LI Wen-xing, CHENG Tie-xin, WU Tong-hao, ZHEN Kai-ji. CO2-dehydrogenation of ethane over Co-MCM-41 catalyst[J]. Chem J Chin Univ, 2005,26(6):1122-1125.  

    23. [23]

      YU Jian-qiang, LI Can, XU L, LI Mei-jun, XIN Qin, LIU Zhong-min. Synthesis of Ti-MCM-41 using colloidal silica and titanium trichloride Ⅱ.Characterization of Ti-MCM-41 molecular sieve[J]. Chin J Catal, 2001,22(4):331-334.  

    24. [24]

      ZHAO Shan-lin, ZHANG Yang-jian, SUN Gui-da, ZHAI Yu-chun. Synthesis of mesoporous molecular sieve vMCM-41 by microwave radiation and its characterization[J]. J Fuel Chem Technol, 1999,27(2):130-133.  

    25. [25]

      ZHENG J, CHU W, ZHANG H, JIANG C F, DAI X Y. CO oxidation over Co3O4/SiO2 catalysts: Effects of porous structure of silica and catalyst calcination temperature[J]. J Nat Gas Chem, 2010,19(6):583-588. doi: 10.1016/S1003-9953(09)60119-5

    26. [26]

      VARGHESE S, CUTRUFELLO M G, ROMBI E, CANNAS C, MONACI R, FERINO I. CO oxidation and preferential oxidation of CO in the presence of hydrogen over SBA-15-templated CuO-Co3O4 catalysts[J]. Appl Catal A: Gen, 2012,443-444:161-170. doi: 10.1016/j.apcata.2012.07.038

    27. [27]

      LIU Yan. Synthesis, characterization and properties of Co3O4-based anode materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    8. [8]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    9. [9]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    10. [10]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    11. [11]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    12. [12]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    13. [13]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    16. [16]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    18. [18]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    19. [19]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    20. [20]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

Metrics
  • PDF Downloads(10)
  • Abstract views(2005)
  • HTML views(315)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return