Citation: ZHOU Xu-hui, WU Shi-yong, YOU Quan, HUANG Sheng, WU You-qing, GAO Jin-sheng, ZHENG Huan-an, MIN Xiao-jian, SHANG Jian-xuan. Effects of carbonization temperature on the products from integrated mild-liquefaction and carbonization process of Hongliulin coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1289-1295. shu

Effects of carbonization temperature on the products from integrated mild-liquefaction and carbonization process of Hongliulin coal

  • Corresponding author: WU You-qing, wyq@ecust.edu.cn
  • Received Date: 24 July 2017
    Revised Date: 25 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21476079, 21476080) and the Fundamental Research Funds for the Central Universities (WB1414014)the Fundamental Research Funds for the Central Universities WB1414014the National Natural Science Foundation of China 21476080the National Natural Science Foundation of China 21476079

Figures(6)

  • The integrated mild-liquefaction and carbonization experiments of Hongliulin coal were conducted at 430-600 ℃, and distributions and physico-chemical properties of the obtained products were investigated. The results show that the yields of semi-cokes, organic liquid products and n-hexane soluble organic products were up to 40.64%-53.02%, 30.89%-36.98% and 29.74%-33.28%, respectively. The increasing carbonization temperature in the relatively low temperature range was favorable for the elevated yield of n-hexane soluble organic products, while at relatively high temperature presenting an opposite one. The semi-cokes obtained at 430 ℃ presented a strong caking property, while those at 550 ℃ showed no caking property, and the content of their volatile matters decreased to about 10%. It is suggested that the produced semi-coke could be directionally utilized as blending coal in coking or smokeless fuel by adjusting carbonization temperature.
  • 加载中
    1. [1]

      BAI Xiao-yan. Influence of pyrolysis temperature on volatile phenolic compounds in low rank coal pyrolysis water[J]. Clean Coal Technol, 2014,20(2):87-89.  

    2. [2]

      LI X, PRIYANTO D E, ASHIDA R, MIURA K. Two-stage conversion of low-rank coal or biomass into liquid fuel under mild conditions[J]. Energy Fuels, 2015,29(5):3127-3133. doi: 10.1021/ef502574b

    3. [3]

      MILAN S, DEJAN C, PREDRAG S, VUK S. An initial study on feasible treatment of Serbian lignite through utilization of low-rank coal upgrading technologies[J]. Chem Eng Res Des, 2014,11(92):2383-2395.  

    4. [4]

      KLAUS J. HUTTINGER, ALEXANDER W M. Molecular structure of a brown coal[J]. Fuel, 1987,66(8):1164-1165. doi: 10.1016/0016-2361(87)90319-X

    5. [5]

      WU You-qing, WU Shi-yong, GAO Jin-sheng, LI Liang. A mild coal liquefaction process:CN, 201310539685.2[P]. 2014-02-05.

    6. [6]

      ZHUANG De-wang, WU Shi-yong, YOU Quan, HUANG Sheng, SHANG Jian-xuan, MIN Xiao-jian, DENG Hua-an, WU You-qing. Low rank coal mild liquefaction coupled with carbonization and its products[J]. J Fuel Chem Technol, 2016,44(5):528-533.  

    7. [7]

      YOU Q, WU S, WU Y, HUANG S, GAO J, SHANG J, MIN X, ZHENG H. Product distributions and characterizations for integrated mild-liquefaction and carbonization of low rank coals[J]. Fuel Process Technol, 2017,156:54-61. doi: 10.1016/j.fuproc.2016.09.022

    8. [8]

      ZHUANG De-wang. The research of mild liquefaction coupled with carbonization process of Hongliulin coal[D]. Shanghai:East China University of Science and Technology, 2016.

    9. [9]

      LUQUE M D, PRIEGO F. Soxhlet extraction:Past and present panacea[J]. J Chromatogra A, 2010,1217(16):2383-2389. doi: 10.1016/j.chroma.2009.11.027

    10. [10]

      ZHU Xiao-su, WANG Yu, DU Shu-feng, ZHENG Jian-guo, ZHANG Fan. Research on the relayed coke of heavy coal-liquids[J]. Coal Convers, 1998,21(2):68-74.  

    11. [11]

      SONG Yong-hui, MA Qiao-na, HE Wen-jin, LAN Xin-zhe. Regularity of gaseous product release during direct coal liquefaction residue pyrolysis process[J]. Spectrosc Spect Anal, 2016,36(7):2017-2021.  

    12. [12]

      FAN Yun-zhu. Exploratory study on properties and application of coal direct liquefaction residue[D]. Shanghai:East China University of Science and Technology, 2011.

    13. [13]

      CALKINS W H, TYLER R J. Coal flash pyrolysis:2. Polymethylene compounds in low temperature flash pyrolysis tars[J]. Fuel, 1984,63(8):1119-1124. doi: 10.1016/0016-2361(84)90198-4

    14. [14]

      SIMELL P A, LEPPALAHTI J K, BREDENBERG J B. Catalytic purification of tarry fuel gas withcarbonate rocks and ferrous materials[J]. Fuel, 1992,71(2):211-218. doi: 10.1016/0016-2361(92)90011-C

    15. [15]

      SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. Models of tar formation during coal devolatilization[J]. Combust Flame, 1988,71(2):137-146. doi: 10.1016/0010-2180(88)90003-X

    16. [16]

      CHANG Song, CHU Mo, CAO Wen-han, WANG Bo. Precipitated rule of gas from direct liquefaction residue pyrolysis[J]. Clean Coal Technol, 2014,20(2):84-86.  

    17. [17]

      WANG Peng, BU Xue-peng, XIN Shi-he, DENG Yi-ying. Study on the pyrolysis characteristics of coal liquefaction residues[J]. Coal Chem Ind, 2005,33(2):20-23.  

    18. [18]

      LI Jian-guang, FANG Yi-tian, ZHANG Yong-qi, LI Chun-yu, WANG Yang. Property of char from fast pyrolysis of direct coal liquefaction residue[J]. J Fuel Chem Technol, 2008,36(3):273-278.  

    19. [19]

      XU L, TANG M, DUAN E, LIU B, MA X, ZHANG Y, ARGYLE M D, FAN M. Pyrolysicharacteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant[J]. Thermochim Acta, 2014,589:1-10. doi: 10.1016/j.tca.2014.05.005

    20. [20]

      CHEN Ming-bo, WANG Bin, ZHAO Qi, QU Si-jian. Study on the coking character of coalliquefaction residue[J]. Clean Coal Technol, 2005,11(1):29-33.  

    21. [21]

      LI Xiao-hong, MA Jiang-shan, XUE Yan-li, LI Wen-ying. Properties of semi-coke from co-pyrolysis of lignite and direct liquefaction residue of Shendong coal[J]. J Fuel Chem Technol, 2015,43(11):1281-1286. doi: 10.3969/j.issn.0253-2409.2015.11.001 

    22. [22]

      QIAN W, XIE Q, HUANG Y, DANG J, SUN K, YANG Q, WANG J. Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal[J]. Int J Min Sci Technol, 2012,22(5):645-650. doi: 10.1016/j.ijmst.2012.08.009

  • 加载中
    1. [1]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    2. [2]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    3. [3]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    6. [6]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    7. [7]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    8. [8]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    11. [11]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    14. [14]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    15. [15]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    18. [18]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    19. [19]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    20. [20]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(0)
  • Abstract views(1537)
  • HTML views(871)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return