Citation: HOU Liang-pei, ZHAO Rong-xiang, LI Xiu-ping. One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 345-353. shu

One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance

  • Corresponding author: ZHAO Rong-xiang, zylhzrx@126.com
  • Received Date: 28 November 2016
    Revised Date: 16 January 2017

Figures(11)

  • A mesoporous carbon containing tungsten was prepared using Na2WO4 and EDTA-2Na as the source of tungsten and carbon and characterized by XRD, FT-IR, SEM and BET. The results show that the tungsten oxide with crystal water (WO3·H2O) is formed on the surface of mesoporous carbon. Compared with pure mesoporous carbon, the total surface area of mesoporous carbon containing tungsten decreases. An extraction-catalytic oxidation desulfurization (ECODS) system was constructed using mesoporous carbon containing tungsten as catalyst, H2O2 as oxidant and ionic liquids (ILs) 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM] [BF4]) as extraction agent. The effects of tungsten oxide loading, reaction temperature, the amount of H2O2, the amount of catalyst and ILs dosage and different types of sulfur compounds on the removal of DBT was studied. Under the optimal conditions, the removal rate of DBT reaches 98.6% for DBT, 65.6% for 4, 6-DMDBT, 61.2% for BT, 57.8% for TH and 64.3% for actual gasoline, respectively. The desulfurization rate is slightly decreased when the catalyst is reused five times.
  • 加载中
    1. [1]

      YU F L, LIU C Y, XIE P H, XIE C X, YU S T. Oxidative-extractive deep desulfurization of gasoline by functionalized heteropoly acid catalysts[J]. RSC Adv, 2015,5(104):85540-85546. doi: 10.1039/C5RA16013H

    2. [2]

      GB 17930-2013, Gasoline for motor vehicles[S].

    3. [3]

      ZHANG H, GAO J, MENG H, LI C X. Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts[J]. Ind Eng Chem Res, 2012,51:6658-6665. doi: 10.1021/ie3004545

    4. [4]

      ZHU W S, WANG C, LI H P, WU P W, XUN S H, JIANG W, CHEN Z G, ZHAO Z, LI H M. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chem, 2015,17(4):2464-2472. doi: 10.1039/C4GC02425G

    5. [5]

      CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, FIERRO J L G. Highly efficient deep desulfurization of fuels by chemical oxidation[J]. Green Chem, 2004,6(11):557-562. doi: 10.1039/b409882j

    6. [6]

      AGGARWAL S, KARIMI I A, LEE D Y. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies[J]. Mol BioSyst, 2011,7(11):3122-3131. doi: 10.1039/c1mb05201b

    7. [7]

      HUANG C P, CHEN B H, ZHANG J, LIU Z C, LI Y. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy Fuels, 2004,18(6):1862-1864. doi: 10.1021/ef049879k

    8. [8]

      ZHAO K, CHENG Y, LIU H Y, YANG C P, QIU L, ZENG G M, HE H J. Extractive desulfurization of dibenzothiophene by a mixed extractant of N, N-dimethylacetamide, N, Ndimethylformamide and tetramethylene sulfone:Optimization by Box-Behnken design[J]. RSC Adv, 2015,5(81):66013-66023. doi: 10.1039/C5RA12305D

    9. [9]

      LENK K Y, SUN Y Y, ZHANG X, XU W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene[J]. Fuel, 2016,174:9-16. doi: 10.1016/j.fuel.2016.01.070

    10. [10]

      ZHOU M D, MENG W Y, LI Y, WANG Q, LI X B, ZANG S L. Extractive and catalytic oxidative desulfurization of gasoline by methyltrioxorhenium in ionic liquids[J]. Energy Fuels, 2013,28(1):516-521.

    11. [11]

      CHAMACK M, MAHJOUB A R. Synthesis and characterization of supported Cs2H[PW4Mo8O40] on iron oxide@mesoporous silica particles:Promising catalyst for oxidative desulfurization process[J]. Catal Lett, 2016,146(6):1050-1058. doi: 10.1007/s10562-016-1731-8

    12. [12]

      SHIRANI M, SEMNANI A, HABIBOLLAHI S, HADDADI H. Synthesis and application of magnetic NaY zeolite composite immobilized with ionic liquid for adsorption desulfurization of fuel using response surface methodology[J]. J Porous Mater, 2016,23(3):701-712. doi: 10.1007/s10934-016-0125-z

    13. [13]

      JAIN N, KUMAR A, CHAUHAN S. Chemical and biochemical transformations in ionic liquids[J]. Tetrahedron, 2005,61(5):1015-1060. doi: 10.1016/j.tet.2004.10.070

    14. [14]

      VAN R F, SHELDON R A. Biocatalysis in ionic liquids[J]. Chem Rev, 2007,107(6):2757-2785. doi: 10.1021/cr050946x

    15. [15]

      SONG C E, ROH E J. Practical method to recycle a chiral (salen) Mn epoxidation catalyst by using an ionic liquid[J]. Chem Commun, 2000,31(35):837-838.  

    16. [16]

      BÖSMANN A, DATSEVICH L, JESS A. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Petrol Sci Technol, 2008,26(9):973-982. doi: 10.1080/10916460600695496

    17. [17]

      ZHAO D S, WANG J L, ZHOU E P. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chem, 2007,9(11):1219-1222. doi: 10.1039/b706574d

    18. [18]

      WU Z Y, IQBAL Z, WANG X Q. Metal-free, carbon-based catalysts for oxygen reduction reactions[J]. Chem Sci Eng, 2015,9(3):280-294.  

    19. [19]

      LI X, ZHU H W, WANG A J, CHEN Y Y. Oxidative desulfurization of dibenzothiophene over tungsten oxides supported on SiO2 and γ-Al2O3[J]. Chem Lett, 2013,42(1):8-10. doi: 10.1246/cl.2013.8

    20. [20]

      LI X C, HUANG S X, XU Q R, YANG Y F. Preparation of WO3-SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst[J]. Transit Metal Chem, 2009,34(8):943-947. doi: 10.1007/s11243-009-9285-x

    21. [21]

      TORRES-GARCIA E, CANIZAL G, VELUMANI S, RAMIREZ-VERDUZCO L, MURRIETA-GUEVARA F, ASCENCIO J. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts[J]. Appl Phys A:Mater, 2004,79(8):2037-2040. doi: 10.1007/s00339-004-2668-0

    22. [22]

      ZHAO R X, LI X P, SU J X, GAO X H. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Appl Surf Sci, 2017,392:810-816. doi: 10.1016/j.apsusc.2016.08.120

    23. [23]

      KATSUMATA H, TACHI Y, SUZUKI T, KANECO S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. Rsc Adv, 2014,4(41):21405-21409. doi: 10.1039/c4ra02511c

    24. [24]

      SHI Y W, LIU G Z, WANG L, ZHANG X W. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chem Eng J, 2015,259:771-778. doi: 10.1016/j.cej.2014.08.054

    25. [25]

      DING J, LIU Q Q, ZHANG Z Y, LIU X, ZHAO J Q, CHENG S B, ZONG B N, DAI W L. Carbon nitride nanosheets decorated with WO3 nanorods:Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Appl Catal B:Environ, 2015,165:511-518. doi: 10.1016/j.apcatb.2014.10.037

    26. [26]

      QIU J H, WANG G H, ZHANG Y Q, ZENG D L, CHEN Y. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil[J]. Fuel, 2015,147:195-202. doi: 10.1016/j.fuel.2015.01.064

    27. [27]

      ZHUANG J Z, HU B, TAN J J, JIN X Y. Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts[J]. Transit Metal Chem, 2014,39(2):213-220. doi: 10.1007/s11243-013-9792-7

    28. [28]

      XIE Dong, HE Qi-hui, SU Yang-yang, WANG Tong-wei, XU Ren-fu, HU Bai-xing. Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant[J]. Chin J Catal, 2015,36(8):1205-1213. doi: 10.1016/S1872-2067(15)60897-X

    29. [29]

      ZHENG D, ZHU W S, XUN S H, ZHOU M M, ZHANG M, JIANG W, QIN Y J, LI H M. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids[J]. Fuel, 2015,159(6):446-453.  

    30. [30]

      CEDEÑO-CAERO L, GOMEZ-BERNAL H, FRAUSTRO-CUEVAS A. Oxidative desulfurization of synthetic diesel using supported catalysts:Part Ⅲ. Support effect on vanadium-based catalysts[J]. Catal Today, 2008,133(1):244-254.  

    31. [31]

      DAI B L, WU P W, ZHU W S, CHAO Y H, SUN J, XIONG J, JAING W, LI H M. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid[J]. RSC Adv, 2015,6(1):140-147.

    32. [32]

      OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    33. [33]

      LO W H, YANG H Y, WEI G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003,5(5):639-642. doi: 10.1039/b305993f

    34. [34]

      LI Yu-hui, FENG Li-juan, WANG Jing-gang, XU Kang-wen, LI Chun-hu. Oxidative desulfurization of diesel oil by mesoporous catalyst MoO3/Al2O3[J]. Acta Pet Sin (Pet Process Sect), 2011,27(6):878-883.  

    35. [35]

      ESSER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem, 2004,6(7):316-322. doi: 10.1039/B407028C

    36. [36]

      ZHAO D S, SUN Z M, LI F T, LIU R, SHAN H D. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid[J]. Energy Fuels, 2008,22(5):3065-3069. doi: 10.1021/ef800162w

    37. [37]

      TANG X D, HU T, LI J J, WANG F, QING D Y. Deep desulfurization of condensate gasoline by electrochemical oxidation and solvent extraction[J]. RSC Adv, 2015,5(66):53455-53461. doi: 10.1039/C5RA06851G

    38. [38]

      SHIRAISHI Y, TACHIBANA K, HIRAI T, KOMASAWA I. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind Eng Chem Res, 2002,41(17):4362-4375. doi: 10.1021/ie010618x

    39. [39]

      DONG Y, NIE Y, ZHOU Q. Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride[J]. Chem Eng Technol, 2013,36(3):435-442. doi: 10.1002/ceat.v36.3

    40. [40]

      USUI Y, SATO K. A green method of adipic acid synthesis:Organic solvent-and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide[J]. Green Chem, 2003,5(4):373-375. doi: 10.1039/b305847f

  • 加载中
    1. [1]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    2. [2]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    3. [3]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    7. [7]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(0)
  • Abstract views(1227)
  • HTML views(659)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return