Citation: HOU Liang-pei, ZHAO Rong-xiang, LI Xiu-ping. One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 345-353. shu

One-step preparation of mesoporous carbon containing tungsten and its desulfurization performance

  • Corresponding author: ZHAO Rong-xiang, zylhzrx@126.com
  • Received Date: 28 November 2016
    Revised Date: 16 January 2017

Figures(11)

  • A mesoporous carbon containing tungsten was prepared using Na2WO4 and EDTA-2Na as the source of tungsten and carbon and characterized by XRD, FT-IR, SEM and BET. The results show that the tungsten oxide with crystal water (WO3·H2O) is formed on the surface of mesoporous carbon. Compared with pure mesoporous carbon, the total surface area of mesoporous carbon containing tungsten decreases. An extraction-catalytic oxidation desulfurization (ECODS) system was constructed using mesoporous carbon containing tungsten as catalyst, H2O2 as oxidant and ionic liquids (ILs) 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM] [BF4]) as extraction agent. The effects of tungsten oxide loading, reaction temperature, the amount of H2O2, the amount of catalyst and ILs dosage and different types of sulfur compounds on the removal of DBT was studied. Under the optimal conditions, the removal rate of DBT reaches 98.6% for DBT, 65.6% for 4, 6-DMDBT, 61.2% for BT, 57.8% for TH and 64.3% for actual gasoline, respectively. The desulfurization rate is slightly decreased when the catalyst is reused five times.
  • 加载中
    1. [1]

      YU F L, LIU C Y, XIE P H, XIE C X, YU S T. Oxidative-extractive deep desulfurization of gasoline by functionalized heteropoly acid catalysts[J]. RSC Adv, 2015,5(104):85540-85546. doi: 10.1039/C5RA16013H

    2. [2]

      GB 17930-2013, Gasoline for motor vehicles[S].

    3. [3]

      ZHANG H, GAO J, MENG H, LI C X. Removal of thiophenic sulfurs using an extractive oxidative desulfurization process with three new phosphotungstate catalysts[J]. Ind Eng Chem Res, 2012,51:6658-6665. doi: 10.1021/ie3004545

    4. [4]

      ZHU W S, WANG C, LI H P, WU P W, XUN S H, JIANG W, CHEN Z G, ZHAO Z, LI H M. One-pot extraction combined with metal-free photochemical aerobic oxidative desulfurization in deep eutectic solvent[J]. Green Chem, 2015,17(4):2464-2472. doi: 10.1039/C4GC02425G

    5. [5]

      CAMPOS-MARTIN J M, CAPEL-SANCHEZ M C, FIERRO J L G. Highly efficient deep desulfurization of fuels by chemical oxidation[J]. Green Chem, 2004,6(11):557-562. doi: 10.1039/b409882j

    6. [6]

      AGGARWAL S, KARIMI I A, LEE D Y. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies[J]. Mol BioSyst, 2011,7(11):3122-3131. doi: 10.1039/c1mb05201b

    7. [7]

      HUANG C P, CHEN B H, ZHANG J, LIU Z C, LI Y. Desulfurization of gasoline by extraction with new ionic liquids[J]. Energy Fuels, 2004,18(6):1862-1864. doi: 10.1021/ef049879k

    8. [8]

      ZHAO K, CHENG Y, LIU H Y, YANG C P, QIU L, ZENG G M, HE H J. Extractive desulfurization of dibenzothiophene by a mixed extractant of N, N-dimethylacetamide, N, Ndimethylformamide and tetramethylene sulfone:Optimization by Box-Behnken design[J]. RSC Adv, 2015,5(81):66013-66023. doi: 10.1039/C5RA12305D

    9. [9]

      LENK K Y, SUN Y Y, ZHANG X, XU W. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene[J]. Fuel, 2016,174:9-16. doi: 10.1016/j.fuel.2016.01.070

    10. [10]

      ZHOU M D, MENG W Y, LI Y, WANG Q, LI X B, ZANG S L. Extractive and catalytic oxidative desulfurization of gasoline by methyltrioxorhenium in ionic liquids[J]. Energy Fuels, 2013,28(1):516-521.

    11. [11]

      CHAMACK M, MAHJOUB A R. Synthesis and characterization of supported Cs2H[PW4Mo8O40] on iron oxide@mesoporous silica particles:Promising catalyst for oxidative desulfurization process[J]. Catal Lett, 2016,146(6):1050-1058. doi: 10.1007/s10562-016-1731-8

    12. [12]

      SHIRANI M, SEMNANI A, HABIBOLLAHI S, HADDADI H. Synthesis and application of magnetic NaY zeolite composite immobilized with ionic liquid for adsorption desulfurization of fuel using response surface methodology[J]. J Porous Mater, 2016,23(3):701-712. doi: 10.1007/s10934-016-0125-z

    13. [13]

      JAIN N, KUMAR A, CHAUHAN S. Chemical and biochemical transformations in ionic liquids[J]. Tetrahedron, 2005,61(5):1015-1060. doi: 10.1016/j.tet.2004.10.070

    14. [14]

      VAN R F, SHELDON R A. Biocatalysis in ionic liquids[J]. Chem Rev, 2007,107(6):2757-2785. doi: 10.1021/cr050946x

    15. [15]

      SONG C E, ROH E J. Practical method to recycle a chiral (salen) Mn epoxidation catalyst by using an ionic liquid[J]. Chem Commun, 2000,31(35):837-838.  

    16. [16]

      BÖSMANN A, DATSEVICH L, JESS A. Deep desulfurization of diesel fuel by extraction with ionic liquids[J]. Petrol Sci Technol, 2008,26(9):973-982. doi: 10.1080/10916460600695496

    17. [17]

      ZHAO D S, WANG J L, ZHOU E P. Oxidative desulfurization of diesel fuel using a Brønsted acid room temperature ionic liquid in the presence of H2O2[J]. Green Chem, 2007,9(11):1219-1222. doi: 10.1039/b706574d

    18. [18]

      WU Z Y, IQBAL Z, WANG X Q. Metal-free, carbon-based catalysts for oxygen reduction reactions[J]. Chem Sci Eng, 2015,9(3):280-294.  

    19. [19]

      LI X, ZHU H W, WANG A J, CHEN Y Y. Oxidative desulfurization of dibenzothiophene over tungsten oxides supported on SiO2 and γ-Al2O3[J]. Chem Lett, 2013,42(1):8-10. doi: 10.1246/cl.2013.8

    20. [20]

      LI X C, HUANG S X, XU Q R, YANG Y F. Preparation of WO3-SBA-15 mesoporous molecular sieve and its performance as an oxidative desulfurization catalyst[J]. Transit Metal Chem, 2009,34(8):943-947. doi: 10.1007/s11243-009-9285-x

    21. [21]

      TORRES-GARCIA E, CANIZAL G, VELUMANI S, RAMIREZ-VERDUZCO L, MURRIETA-GUEVARA F, ASCENCIO J. Influence of surface phenomena in oxidative desulfurization with WOx/ZrO2 catalysts[J]. Appl Phys A:Mater, 2004,79(8):2037-2040. doi: 10.1007/s00339-004-2668-0

    22. [22]

      ZHAO R X, LI X P, SU J X, GAO X H. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Appl Surf Sci, 2017,392:810-816. doi: 10.1016/j.apsusc.2016.08.120

    23. [23]

      KATSUMATA H, TACHI Y, SUZUKI T, KANECO S. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. Rsc Adv, 2014,4(41):21405-21409. doi: 10.1039/c4ra02511c

    24. [24]

      SHI Y W, LIU G Z, WANG L, ZHANG X W. Efficient adsorptive removal of dibenzothiophene from model fuel over heteroatom-doped porous carbons by carbonization of an organic salt[J]. Chem Eng J, 2015,259:771-778. doi: 10.1016/j.cej.2014.08.054

    25. [25]

      DING J, LIU Q Q, ZHANG Z Y, LIU X, ZHAO J Q, CHENG S B, ZONG B N, DAI W L. Carbon nitride nanosheets decorated with WO3 nanorods:Ultrasonic-assisted facile synthesis and catalytic application in the green manufacture of dialdehydes[J]. Appl Catal B:Environ, 2015,165:511-518. doi: 10.1016/j.apcatb.2014.10.037

    26. [26]

      QIU J H, WANG G H, ZHANG Y Q, ZENG D L, CHEN Y. Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil[J]. Fuel, 2015,147:195-202. doi: 10.1016/j.fuel.2015.01.064

    27. [27]

      ZHUANG J Z, HU B, TAN J J, JIN X Y. Deep oxidative desulfurization of dibenzothiophene with molybdovanadophosphoric heteropolyacid-based catalysts[J]. Transit Metal Chem, 2014,39(2):213-220. doi: 10.1007/s11243-013-9792-7

    28. [28]

      XIE Dong, HE Qi-hui, SU Yang-yang, WANG Tong-wei, XU Ren-fu, HU Bai-xing. Oxidative desulfurization of dibenzothiophene catalyzed by peroxotungstate on functionalized MCM-41 materials using hydrogen peroxide as oxidant[J]. Chin J Catal, 2015,36(8):1205-1213. doi: 10.1016/S1872-2067(15)60897-X

    29. [29]

      ZHENG D, ZHU W S, XUN S H, ZHOU M M, ZHANG M, JIANG W, QIN Y J, LI H M. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids[J]. Fuel, 2015,159(6):446-453.  

    30. [30]

      CEDEÑO-CAERO L, GOMEZ-BERNAL H, FRAUSTRO-CUEVAS A. Oxidative desulfurization of synthetic diesel using supported catalysts:Part Ⅲ. Support effect on vanadium-based catalysts[J]. Catal Today, 2008,133(1):244-254.  

    31. [31]

      DAI B L, WU P W, ZHU W S, CHAO Y H, SUN J, XIONG J, JAING W, LI H M. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid[J]. RSC Adv, 2015,6(1):140-147.

    32. [32]

      OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W H, ISHIHARA A, IMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1232-1239. doi: 10.1021/ef000096i

    33. [33]

      LO W H, YANG H Y, WEI G T. One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids[J]. Green Chem, 2003,5(5):639-642. doi: 10.1039/b305993f

    34. [34]

      LI Yu-hui, FENG Li-juan, WANG Jing-gang, XU Kang-wen, LI Chun-hu. Oxidative desulfurization of diesel oil by mesoporous catalyst MoO3/Al2O3[J]. Acta Pet Sin (Pet Process Sect), 2011,27(6):878-883.  

    35. [35]

      ESSER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil refinery streams by extraction with ionic liquids[J]. Green Chem, 2004,6(7):316-322. doi: 10.1039/B407028C

    36. [36]

      ZHAO D S, SUN Z M, LI F T, LIU R, SHAN H D. Oxidative desulfurization of thiophene catalyzed by (C4H9)4NBr·2C6H11NO coordinated ionic liquid[J]. Energy Fuels, 2008,22(5):3065-3069. doi: 10.1021/ef800162w

    37. [37]

      TANG X D, HU T, LI J J, WANG F, QING D Y. Deep desulfurization of condensate gasoline by electrochemical oxidation and solvent extraction[J]. RSC Adv, 2015,5(66):53455-53461. doi: 10.1039/C5RA06851G

    38. [38]

      SHIRAISHI Y, TACHIBANA K, HIRAI T, KOMASAWA I. Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid-liquid extraction[J]. Ind Eng Chem Res, 2002,41(17):4362-4375. doi: 10.1021/ie010618x

    39. [39]

      DONG Y, NIE Y, ZHOU Q. Highly efficient oxidative desulfurization of fuels by Lewis acidic ionic liquids based on iron chloride[J]. Chem Eng Technol, 2013,36(3):435-442. doi: 10.1002/ceat.v36.3

    40. [40]

      USUI Y, SATO K. A green method of adipic acid synthesis:Organic solvent-and halide-free oxidation of cycloalkanones with 30% hydrogen peroxide[J]. Green Chem, 2003,5(4):373-375. doi: 10.1039/b305847f

  • 加载中
    1. [1]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    4. [4]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    5. [5]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    8. [8]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    9. [9]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    13. [13]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    14. [14]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    15. [15]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    16. [16]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

Metrics
  • PDF Downloads(0)
  • Abstract views(1268)
  • HTML views(661)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return