Citation: XIAO Ya-hui, LIU Yong, QIAO Cong-zhen, XU Shao-ping. Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1430-1439. shu

Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system

  • Corresponding author: XIAO Ya-hui, yahuixiao1987@163.com
  • Received Date: 9 September 2019
    Revised Date: 21 October 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (50776013, 21676072), the Key Scientific Research Projects for Higher Education of Henan Province (20A530002)the National Natural Science Foundation of China 50776013the National Natural Science Foundation of China 21676072the Key Scientific Research Projects for Higher Education of Henan Province 20A530002

Figures(7)

  • In order to strengthen tar destruction and hydrogen-rich gas production in the biomass gasification, a novel decoupled dual loop gasification (DDLG) system was proposed. The system decouples gasification process into fuel gasification, tar reforming and residual char combustion, which occur in three independent reactors, i.e. gasifier, reformer and combustor. Both the gasifier and the reformer are separately interconnected with the combustor, forming two circulation loops in parallel. With pine sawdust as feedstock, and calcined olivine as both solid heat carriers and in-situ tar destruction catalyst, the performance of biomass gasification was investigated. The results indicate that the reforming after the gasifier and the presence of olivine catalyst greatly improve the tar destruction. Specifically, at the gasifier temperature of 700 ℃, the reformer temperature of 850 ℃ and the steam to carbon mass ratio (S/C) of 1.2, the tar content in product gas decreases to 13.9 g/m3, and the dry gas yield and H2 concentration reach 1.0 m3/kg, and 38.8%, respectively.
  • 加载中
    1. [1]

      WU Chuang-zhi, YIN Xiu-li, LIU Hua-cai, CHEN Yong. Perspective on development of distributed bioenergy utilization[J]. Bull Chin Aca Sci, 2016(2):191-198.  

    2. [2]

      DOU B, ZHANG H, SONG Y, ZHAO L, JIANG B, HE M, RRAN C, CHEN H, XU Y. Hydrogen production from the thermochemical conversion of biomass:Issues and challenges[J]. Sustainable Energy Fuels, 2019,3:314-342. doi: 10.1039/C8SE00535D

    3. [3]

      JIA Shuang, YING Hao, SUN Yun-juan, SUN Ning, XU Wei, XU Yu, NING Si-yun. Research advance in biomass steam gasification for hydrogen-rich syngas and its application[J]. Chem Ind Eng Prog, 2018,37(2):497-504.  

    4. [4]

      SANSANIWAL S K, PAL K, ROSEN M A, TYAGI S K. Recent advances in the development of biomass gasification technology:A comprehensive review[J]. Renewable Sustainable Energy Rev, 2017,72:363-384. doi: 10.1016/j.rser.2017.01.038

    5. [5]

      MA X, ZHAO X, GU J, SHI J. Co-gasification of coal and biomass blends using dolomite and olivine as catalysts[J]. Renewable Energy, 2019,132:509-514. doi: 10.1016/j.renene.2018.07.077

    6. [6]

      GUAN G, KAEWPANHA M, HAO X, ABUDULA A. Catalytic steam reforming of biomass tar:Prospects and challenges[J]. Renewable Sustainable Energy Rev, 2016,58:450-461. doi: 10.1016/j.rser.2015.12.316

    7. [7]

      KIRNBAUER F, HOFBAUER H. Investigations on bed material changes in a dual fluidized bed steam gasification plant in Güssing, Austria[J]. Energy Fuels, 2011,25:3793-3798. doi: 10.1021/ef200746c

    8. [8]

      NAQVI M, YAN J, DANISH M, FAROOQ U, LU S G. An experimental study on hydrogen enriched gas with reduced tar formation using pre-treated olivine in dual bed steam gasification of mixed biomass compost[J]. Int J Hydrogen Energy, 2016,41(25):10608-10618. doi: 10.1016/j.ijhydene.2016.04.206

    9. [9]

      XIAO Y, XU S, TURSUN Y, WANG C, WANG G. Catalytic steam gasification of lignite for hydrogen-rich gas production in a decoupled triple bed reaction system[J]. Fuel, 2017,189:57-65. doi: 10.1016/j.fuel.2016.10.078

    10. [10]

      XIAO Ya-hui. Decoupled catalytic gasification of biomass and coal for hydrogen-rich gas production[D]. Dalian: Dalian University of Technology, 2017. 

    11. [11]

      XU Guang-wen, DONG Li, LIU Xin-hua, WANG Yin, WANG Bao-qun, GAO Shi-qiu. Decoupling thermochemical conversion: Method, technique and research status[C]//Proceedings of 6th annual conference of China society of particuology cum symposium on particle technology across Taiwan straits. Shanghai, 2008: 949-952. 

    12. [12]

      ZHANG J, WANG Y, DONG L, GAO S, XU G. Decoupling gasification:Approach principle and technology justification[J]. Energy Fuels, 2010,24:6223-6232. doi: 10.1021/ef101036c

    13. [13]

      ZHANG J, WU R, ZHANG G, YU J, YAO C, WANG Y, GAO S, XU G. Technical review on thermochemical conversion based on decoupling for solid carbonaceous fuels[J]. Energy Fuels, 2013,27(4):1951-1966. doi: 10.1021/ef400118b

    14. [14]

      LI C Z, XU G W. Decoupled thermochemical conversion-Preface[J]. Fuel, 2013,112:607-608. doi: 10.1016/j.fuel.2013.06.027

    15. [15]

      WANG Xiao-ming, XIAO Xian-bin, LIU Ji, CHEN Xu-jiao, QIN Wu, DONG Chang-qing, LI Wen-yan. Research progress of dual fluidized bed biomass gasifier[J]. Chem Ind Eng Prog, 2015,34(1):26-31.  

    16. [16]

      SUN Yan-lin, ZENG Xi, WANG Fang, CUI Yan-bin, XU Guang-wen. Pilot test of low-rank crushed coal gasification in two-stage fluidized bed reactor[J]. J China Coal Soc, 2017,42(5):1297-1303.  

    17. [17]

      ZENG Ji-min, XIAO Rui, HENG Li-jun, ZENG De-wang, SHAO Shan-shan. Chemical looping gasification of biomass for high H2/CO-ratio syngas[J]. J Combust Sci Technol, 2016,22(3):229-235.  

    18. [18]

      GUO Wan-jun, GE Hui-jun, SHEN Lai-hong, SONG Tao, GU Hai-ming, JIANG Shou-xi. Experimental study on chemical looping gasification of biomass with hematite base on 25 kWth fluidized beds[J]. J Therm Sci Technol, 2017,16(1):78-86.  

    19. [19]

      ZHANG Z, PANG S. Experimental investigation of tar formation and producer gas composition in biomass steam gasification in a 100kW dual fluidised bed gasifier[J]. Renewable Energy, 2018,132:416-424.  

    20. [20]

      MAUERHOFER A M, FUCHS J, MÜLLER S, BENEDIKT F, SCHMID J C, HOFBAUER H. CO2 gasification in a dual fluidized bed reactor system:Impact on the product gas composition[J]. Fuel, 2019,253:1605-1616. doi: 10.1016/j.fuel.2019.04.168

    21. [21]

      XIAO Y, XU S, SONG Y, WANG C, OUYANG S. Gasification of low-rank coal for hydrogen-rich gas production in a dual loop gasification system[J]. Fuel Process Technol, 2018,171:110-116. doi: 10.1016/j.fuproc.2017.11.014

    22. [22]

      XIAO Y, XU S, SONG Y, SHAN Y, WANG C, WANG G. Biomass steam gasification for hydrogen-rich gas production in a decoupled dual loop gasification system[J]. Fuel Process Technol, 2017,165:54-61. doi: 10.1016/j.fuproc.2017.05.013

    23. [23]

      DEVI L, PTASINSKI K J, JANSSEN F J J G. Pretreated olivine as tar removal catalyst for biomass gasifiers:Investigation using naphthalene as model biomass tar[J]. Fuel Process Technol, 2005,86(6):707-730. doi: 10.1016/j.fuproc.2004.07.001

    24. [24]

      VIRGINIE M, ADÁNEZ J, COURSON C, DE DIEGO L F, GARCIA-LABIANO F, NIZNANSKY D, KIENNEMANN A, GAYÁN P, ABAD A. Effect of Fe-olivine on the tar content during biomass gasification in a dual fluidized bed[J]. Appl Catal B:Environ, 2012,121/122:214-222.  

    25. [25]

      LANCEE R J, DUGULAN A I, THÜNE P C, VERINGA H J, NIEMANTSVERDRIET J W, FREDRIKSSON H O A. Chemical looping capabilities of olivine, used as a catalyst in indirect biomass gasification[J]. Appl Catal B:Environ, 2014,145:216-222. doi: 10.1016/j.apcatb.2013.01.041

    26. [26]

      WOLFESBERGER U, AIGNER I, HOFBAUER H. Tar content and composition in producer gas of fluidized bed gasification of wood-Influence of temperature and pressure[J]. Environ Prog Sustainable Energy, 2009,28:372-379. doi: 10.1002/ep.10387

    27. [27]

      DEVI L, PTASINSKI K J, JANSSEN F J J G, VAN PAASEN S V B, BERGMAN P C A, KIEL J H A. Catalytic decomposition of biomass tars:use of dolomite and untreated olivine[J]. Renewable Energy, 2005,30(4):565-587. doi: 10.1016/j.renene.2004.07.014

    28. [28]

      ISRAELSSON M, THUNMAN H. Gasification reaction pathways of condensable hydrocarbons[J]. Energy Fuels, 2016,30:4951-4959. doi: 10.1021/acs.energyfuels.6b00515

    29. [29]

      KOPPATZ S, PFEIFER C, HOFBAUER H. Comparison of the performance behaviour of silica sand and olivine in a dual fluidized bed reactor system for steam gasification of biomass at pilot plant scale[J]. Chem Eng J, 2011,175:468-483. doi: 10.1016/j.cej.2011.09.071

  • 加载中
    1. [1]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    4. [4]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    5. [5]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    6. [6]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    16. [16]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    19. [19]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

Metrics
  • PDF Downloads(9)
  • Abstract views(970)
  • HTML views(128)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return