Citation: HU Bin, WANG Xiao-bei, BAI Lu, LIANG Cai, YANG Lin-jun. Experimental study on strengthening the electrostatic precipitation removal of PM2.5 and SO3 by desulfurization wastewater evaporation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 889-896. shu

Experimental study on strengthening the electrostatic precipitation removal of PM2.5 and SO3 by desulfurization wastewater evaporation

  • Corresponding author: YANG Lin-jun, ylj@seu.edu.cn
  • Received Date: 6 March 2017
    Revised Date: 21 April 2017

    Fund Project: the Major State Basic Research Development Program of China 973 programthe Major State Basic Research Development Program of China 2013CB228505

Figures(11)

  • In order to study the influence of desulfurization wastewater evaporation (DWE) on the ESP and the desulfurization performance, an experimental setup with DWE and the coal-fired thermal system was established. The removal of PM2.5 and SO3 from coal combustion with DWE and the evolution of fine particle size and PM2.5 and SO3 concentration at ESP outlet were investigated. Also, the mechanism of PM2.5 and SO3 removal was analyzed. The results show that DWE can increase the average size of particles from 0.1 μm to 1.1 μm. Compared SEM image before DWE with that after DWE, the particles reuniting and floc formation between particles are clearly observed. The ESP efficiency is increased by 5%; the removal efficiency of PM2.5 in number concentration is increased by 25% at the ESP outlet; and the removal efficiency of SO3 by ESP is 60%-80%. The SO3 concentration in flue gas has an effect on PM2.5 and SO3 removal by ESP. However, the DWE has no effect on the desulfurization efficiency and the pH value of the desulfurization slurry.
  • 加载中
    1. [1]

      YANG Lin-jun. Pollution Control Technology of Fine Particles from the Combustion Sources[M]. Beijing:Chemical Industry Press, 2011.

    2. [2]

      GB13223-2011, Emission standard of air pollutants for thermal power plants[S].

    3. [3]

    4. [4]

      KIM K, YANG S, EUM H. Analysis of the scale formed in FGD facility[J]. Anal Sci, 2007,17:i1615-i1617.

    5. [5]

      LI Wen-yan, WANG Ji-xing, CHE Jian-wei. Wet flue gas desulfurization wet exhaust problem analysis[J]. Proc CSEE, 2007,27(14):36-40. doi: 10.3321/j.issn:0258-8013.2007.14.007

    6. [6]

      MA S C, CHAI J, CHEN G D. Research on desulfurization wastewater evaporation:Present and future perspectives[J]. Renew Sust Energy Rev, 2016,58:1143-1151. doi: 10.1016/j.rser.2015.12.252

    7. [7]

      ZHANG Zhi-rong. Study on key problems of the thermal power plant FGD waste water with evaporation treatment[D]. Chongqing:Chongqing University, 2011.

    8. [8]

      ZHANG Zi-jing, WANG Jian-wen, GAO Yi, WEN Gao, SUN Shi-chang, LANG Lin-mao. Flow field simulation of smoke and gas evaporation characteristics of desulfurization wastewater in coal-fired power plant[J]. J China Coal Soc, 2015,40(3):678-683.  

    9. [9]

      DENG Jia-jia. Study on optimization of coal combustion power plant WFGD spray scrubber process and zero discharge of WFGD wastewate[D]. Chongqing:Chongqing University, 2015.

    10. [10]

      MA Shuang-chen, CHAI Feng, WU Wen-long, YU Wei-jin, CHEN Gong-da. Experimental research on influencing factors of flue evaporation treatment for desulfurization wastewater[J]. Environ Sci Technol, 2015,38(12):297-301.  

    11. [11]

      Mitsubishi Heavy Industries. Mitsubishi gas-gas heater[Z]. Japan:Mitsubishi Heavy Industries, 1986.

    12. [12]

      HONJO S, SHINODA T, NAKAYAMA Y. MHI Wet-FGD waste water treatment technologies[R]. Japan:Mitsubishi Heavy Industries, 1987.

    13. [13]

      MIERZEJEWSKI M K. The treatment and disposal of wastewater from flue gas desulphurization plant[J]. IWC, 1991,24(2):125-129.

    14. [14]

      LIU Yong, YANG Lin-jun, PAN Dan-ping, ZHAO Wen, LIU Rui, HU Bin. Experimental study on amount reduce of PM2[J]. J Southeast Univ:Nat Sci Ed, 2015,45(2):320-327.  

    15. [15]

      PAN Dan-ping, WU Hao, HUANG Rong-ting, ZHANG Ya-ping, YANG Lin-jun. Removal properties of sulfuric acid mist during limestone-gypsum flue gas desulfurization process[J]. J Southeast Univ:Nat Sci Ed, 2016,46(2):311-316.

    16. [16]

      ZHOU Li-xing. Dynamics of Multiphase Turbulent Reacting Fluid Flows[M]. Beijing:National Defence Industry Press, 2002.

    17. [17]

      KUO K K. Principles of Combustion[M]. New York:John Wiley and Sons, 1986.

    18. [18]

      YUE Yong, CHEN Lei, YAO Qiang, LI Shui-qing. Study on characteristics of particulate matter size distribution and trace elements enrichment in emission from a pulverized coal-fired boiler[J]. Proc CSEE, 2005,25(18):74-79. doi: 10.3321/j.issn:0258-8013.2005.18.013

    19. [19]

      CHANG Jing-cai. Experimental study on flexible collection electrode applied in advanced purification for coal fired flue gas following WFGD[D]. Jinan:Shangdong University, 2011.

    20. [20]

      QI Li-qiang, YAN Wei-ping, YUAN Yong-tao. Physicochemical characteristics and the mechanism of fly ash escaped from electrostatic precipitator of coal-fired boiler[J]. Proc CSEE, 2007,27(5):45-48.  

    21. [21]

      MOSER R E. SO3 impacts on plant O&M:part Ⅰ[J]. Power, 2005,150(8):10-15.

    22. [22]

      LOU Qing-gang. Study on the formation mechanism of SO3 during coal burning[J]. Energy Eng, 2008,6(1):46-49.  

    23. [23]

      XIAO Gang, JIN Bao-sheng, LIU Ji-chi, ZHONG Zhao-ping, XIAO Rui, HUANG Ya-ji, ZHONG Wen-qi, WANG Xiao-fang, XU Yan. Quantitative analysis of dissolution rate of limestone used in WFGD[J]. J Southeast Univ:Nat Sci Ed, 2008,38(6):1029-1033. doi: 10.3969/j.issn.1001-0505.2008.06.018

    24. [24]

      YAN Jin-pei, YANG Lin-jun, BAO Jing-jing. Impact property on fine particles from coal combustion in wet flue gas desulfurization process[J]. J Southeast Univ:Nat Sci Ed, 2011,41(2):387-392.  

  • 加载中
    1. [1]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    2. [2]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    3. [3]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    4. [4]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    5. [5]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    6. [6]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    7. [7]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    10. [10]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    15. [15]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    16. [16]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Dan ShaoYujing LyuChengyuan LiuHao WangNing MaHao XuWei YanXiaohua JiaHaojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641

    18. [18]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    19. [19]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    20. [20]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

Metrics
  • PDF Downloads(3)
  • Abstract views(1076)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return