Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content
- Corresponding author: QING Shao-jun, qingshaojun@sxicc.ac.cn GAO Zhi-xian, gaozx@lnpu.edu.cn
Citation:
LIU Ya-jie, KANG He-fei, HOU Xiao-ning, ZHANG Lei, QING Shao-jun, GAO Zhi-xian, XIANG Hong-wei. Cu-Ni-Al spinel catalyzed methanol steam reforming for hydrogen production: Effect of Al content[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(9): 1112-1121.
FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019,45(10):15-21.
FASANYA O O, AL-HAJRI R, AHMED O U, MYINT M T Z, ATTA A Y, JIBRIL B Y, DUTTA J. Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming[J]. Int J Hydrogen Energy, 2019,44(41):22936-22946. doi: 10.1016/j.ijhydene.2019.06.185
MATSUKAT M, UEMIYA S, KIKUCHI E. Copper-alumina spinel catalysts for steam reforming of methanol[J]. Chem Lett, 1988,17(5):761-764. doi: 10.1246/cl.1988.761
FUKUNAGA T, RYUMON N, ICHIKUNI N, SHIMAZU S. Characterization of CuMn-spinel catalyst for methanol steam reforming[J]. Catal Commun, 2009,10(14):1800-1803. doi: 10.1016/j.catcom.2009.06.001
MAITI S, DAS D, PAL K, LLORCA J, SOLER L, COLUSSI S, TROVARELLI A, PRIOLKAR K R, SARODE P R, ASAKURA K, SEIKH M M, GAYEN A. Methanol steam reforming behavior of sol-gel synthesized nanodimensional CuxFe1-xAl2O4 hercynites[J]. Appl Catal A:Gen, 2019,570:73-83. doi: 10.1016/j.apcata.2018.11.011
HWANG B-Y, SAKTHINATHAN S, CHIU T-W. Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1-xFexO2 (x=0-1) nanopowders catalyst[J]. Int J Hydrogen Energy, 2019,44(5):2848-2856. doi: 10.1016/j.ijhydene.2018.12.052
SICKAFUS K E, WILLS J M. Structure of spinel[J]. J Am Ceram Soc, 1999,82(12):3279-3292.
XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed, 2014,53(44):11886-11889. doi: 10.1002/anie.201405213
LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Cu-Ni-Al spinel oxide as an efficient durable catalyst for methanol steam reforming[J]. ChemCatChem, 2018,10(24):5698-5706. doi: 10.1002/cctc.201801472
LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol, 2017,7(21):5069-5078. doi: 10.1039/C7CY01236E
LIU Ya-jie, QING Shao-jun, HOU Xiao-ning, ZHANG Lei, GAO Zhi-xian, XIANG Hong-wei. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol, 2020,48(3):338-348.
QIN F J, LIU Y J, QING S J, HOU X N, GAO Z X. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming:Effects of different copper sources[J]. J Fuel Chem Technol, 2017,45(12):1481-1488. doi: 10.1016/S1872-5813(17)30065-8
QING S J, HOU X N, LIU Y J, LI L D, WANG X, GAO Z X, FAN W B. Strategic use of CuAlO2 as a sustained release catalyst for production of hydrogen from methanol steam reforming[J]. Chem Commun, 2018,54(86):12242-12245. doi: 10.1039/C8CC06600K
HOU X N, QING S J, LIU Y J, LI L D, GAO Z X, Qin Y. Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2019,45(1):477-489.
QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lie, LI Lin-dong, GAO Zhi-xian. Catalytic performance of Cu-Ni-Al spinel for methanol steam reforming to hydrogen[J]. J Fuel Chem Technol, 2018,46(10):1210-1217.
HOU X N, QIN F J, QING S J, LIU Y J, LI L D, GAO Z X, QIN Y. Probing the existing state of Cu(ii) in a Cu-Al spinel catalyst using N2O decomposition reaction with the aid of conventional characterizations[J]. Catal Sci Technol, 2019,9(11):2993-3001. doi: 10.1039/C9CY00563C
HILL M R, BASTOW T J, CELOTTO S, HILL A J. Integrated study of the calcination cycle from gibbsite to corundum[J]. Chem Mater, 2007,19:2877-2883. doi: 10.1021/cm070078f
MILLER M E, MISTURE S T. Idealizing γ-Al2O3:In situ determination of nonstoichiometric spinel defect structure[J]. J Phys Chem C, 2010,114:13039-13046. doi: 10.1021/jp102759y
RYNKOWSKI J M, PARYJCZAK T, LENIK M. On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts[J]. Appl Catal A:Gen, 1993,106:73-82. doi: 10.1016/0926-860X(93)80156-K
MORETTI G, FIERRO G, JACONO M L, PORTA P. Characterization of CuO-ZnO catalysts by X-ray photoelectron spectroscopy:Precursors, calcined and reduced samples[J]. Surf Interface Anal, 1989,14(6/7):325-336.
FIGUEIREDO R T, MARTÍNEZ-ARIAS A, GRANADOS M L, FIERRO J L G. Spectroscopic evidence of Cu-Al interactions in Cu-Zn-Al mixed oxide catalysts used in CO hydrogenation[J]. J Catal, 1998,178:146-152. doi: 10.1006/jcat.1998.2106
BAHMANPOUR A M, HÉROGUEL F, KILIÇ M, BARANOWSKI C J, SCHOUWINK P, RÖTHLISBERGER U, LUTERBACHER J S, KRÖCHER O. Essential role of oxygen vacancies of Cu-Al and Co-Al spinel oxides in their catalytic activity for the reverse water gas shift reaction[J]. Appl Catal B:Environ, 2020,266(118669):1-8.
ERTL G, HIERL R, KNÖZINGER H, THIELE N, URBACH H P. XPS study of copper aluminate catalysts[J]. Appl Surf Sci, 1980,5:49-64. doi: 10.1016/0378-5963(80)90117-8
WAGNER C D, DAVIS L E, ZELLER M V, TAYLOR J A, RAYMOND R H, GALE L H. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis[J]. Surf Interface Anal, 1981,3(5):211-225. doi: 10.1002/sia.740030506
SHIMIZU K-I, MAESHIMA H, YOSHIDA H, SATSUMA A, HATTORI T. Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene[J]. Phys Chem Chem Phys, 2000,2(10):2435-2439. doi: 10.1039/b000943l
NG K T, HERCULE D M. Studies of nickel-tungsten-alumina catalysts by X-ray photoelectron spectroscopy[J]. J Phys Chem, 1976,80:2094-2102. doi: 10.1021/j100560a009
MATSUMURA Y, TANAKA K, TODE N, YAZAWA T, HARUTA M. Catalytic methanol decomposition to carbon monoxide and hydrogen over nickel supported on silica[J]. J Mol Catal A:Chem, 2000,152:157-165. doi: 10.1016/S1381-1169(99)00282-4
FURUHASHI H, INAGAKI M, NAKA S. Determination of cation distribution in spinels by X-ray diffraction method[J]. J Inorg Nucl Chem, 1973,35:3009-3014. doi: 10.1016/0022-1902(73)80531-7
LATHE C, GUSE W, SAALFELD H, HAMBURG , FREIMANN S, RAHMAN S H. Interpretation of σ-Al2O3 real structure by means of X-ray investigations and the videographic method[J]. N Jb Miner Abh, 1999,174:293-304.
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2; f: CuAl2O4
a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2; f: CuAl2O4; g: γ-Al2O3
a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2
a: CA2; b: C0.95N0.05A2; c: C0.95N0.05A3; d: C0.95N0.05A4; e: NA2
(a) Cu 2p3/2; (b) Al 2p; (c) Ni 2p3/2; a: C0.95N0.05A2; b: C0.95N0.05A3; c: C0.95N0.05A4