Citation: WANG Hui-min, NING Ping, ZHANG Qiu-lin, LIU Xin, ZHANG Teng-xiang, HU Jia, WANG Lan-ying. Effect of different RuO2 contents on selective catalytic oxidation of ammonia over RuO2-Fe2O3 catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 215-223. shu

Effect of different RuO2 contents on selective catalytic oxidation of ammonia over RuO2-Fe2O3 catalysts

  • Corresponding author: ZHANG Qiu-lin, qiulinzhang_kmust@163.com
  • Received Date: 8 October 2018
    Revised Date: 7 December 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21307047)the National Natural Science Foundation of China 21307047

Figures(6)

  • A series of RuO2-Fe2O3 catalysts varied in RuO2 loading were prepared by sol-gel method and used for selective catalytic oxidation of ammonia to nitrogen. The results indicated that all the RuO2-Fe2O3 catalysts showed an excellent low-temperature catalytic activity and the RuO2 loading played a key role in catalytic activity of ammonia oxidation. Moreover, the characterizations of BET, XRD, H2-TPR and DRIFTS were employed to investigate the relation between the physicochemical property of catalysts and catalytic activity. The research results elucidated that the introduction of RuO2 increased the surface area. The synergistic effect between RuO2 and Fe2O3 enhanced the redox property and the catalytic activity of ammonia oxidation. Meanwhile, the RuO2 loading gave the significant effect on surface acidity of catalysts. Lewis acid sites were predominant on the catalyst surface.
  • 加载中
    1. [1]

      KOWALCZYK A, BORCUCH A, MICHALIK M, RUTKOWSKA M, GIL B, SOJKA Z, INDYKA P, CHMIELARZ L. MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen[J]. Microporous Mesoporous Mater, 2017,240:9-21.  

    2. [2]

      YAN Chun-di, CHENG Hao, WANG Shu-dong. Effects of copper content in Cu-SAPO-34 on its catalytic performance in NH3-SCR of NOx[J]. J Fuel Chem Technol, 2014,42(6):743-750.  

    3. [3]

      KIM M S, LEE D W, CHUNG S H, HONG Y K, LEE S H, OH S H, CHO I H, LEE K Y. Oxidation of ammonia to nitrogen over Pt/Fe/ZSM5 catalyst:Influence of catalyst support on the low temperature activity[J]. J Hazard Mater, 2012,237-238:153-160.  

    4. [4]

      WANG Z, QU Z P, QUAN X, WANG H. Selective catalytic oxidation of ammonia to nitrogen over ceria-zirconia mixed oxides[J]. Appl Catal A:Gen, 2012,411-412:131-138. doi: 10.1016/j.apcata.2011.10.030

    5. [5]

      LEE S M, HONG S C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Appl Catal B:Environ, 2015,163:30-39. doi: 10.1016/j.apcatb.2014.07.043

    6. [6]

      HUNG C M. Cordierite-supported Pt-Pd-Rh ternary composite for selective catalytic oxidation of ammonia[J]. Powder Technol, 2010,200(1/2):78-83.  

    7. [7]

      CHEN W M, QU Z, HUANG W J, HU X F, YAN N Q. Novel effect of SO2 on selective catalytic oxidation of slip ammonia from coal-fired flue gas over IrO2 modified Ce-Zr solid solution and the mechanism investigation[J]. Fuel, 2016,166:179-187. doi: 10.1016/j.fuel.2015.10.116

    8. [8]

      YANG M, WU C Q, ZHANG C B, HE H. Selective oxidation of ammonia over copper-silver-based catalysts[J]. Catal Today, 2004,90(3/4):263-267.  

    9. [9]

      QU Z P, WANG H, WANG S D, CHENG H, QIN Y, WANG Z. Role of the support on the behavior of Ag-based catalysts for NH3 selective catalytic oxidation (NH3-SCO)[J]. Appl Surf Sci, 2014,316:373-379. doi: 10.1016/j.apsusc.2014.08.023

    10. [10]

      KADDOURI A, DUPONT N, GELIN P, AUROUX A. Selective oxidation of gas phase ammonia over copper chromites catalysts prepared by the sol-gel process[J]. Catal Commun, 2011,15(1):32-36.  

    11. [11]

      QU Z P, FAN R, WANG Z, WANG H, MIAO L. Selective catalytic oxidation of ammonia to nitrogen over MnO2 prepared by urea-assisted hydrothermal method[J]. Appl Surf Sci, 2015,351:573-579. doi: 10.1016/j.apsusc.2015.05.154

    12. [12]

      GANG L, GRONDELLE J, ANDERSON B G, SANTEN R A. Selective low temperature NH3 oxidation to N2 on copper-based catalysts[J]. J Catal, 1999,186(1):100-109. doi: 10.1006/jcat.1999.2524

    13. [13]

      JABLONSKA M, KROL A, KUKULSKA-ZAJAC E, TARACH K, CHMIELARZ L, GORA-MAREK K. Zeolite Y modified with palladium as effective catalyst for selective catalytic oxidation of ammonia to nitrogen[J]. J Catal, 2014,316:36-46. doi: 10.1016/j.jcat.2014.04.022

    14. [14]

      LONG R Q, YANG R T. Noble metal (Pt, Rh, Pd) promoted Fe-ZSM-5 for selective catalytic oxidation of ammonia to N2 at low temperatures[J]. Catal Lett, 2002,78(1/4):353-357.  

    15. [15]

      RUTKOWSKA M, PACIA I, BASAG S, KOWALCZYK A, PIWOWARSKA Z, DUDA M, TARACH K A, GORA-MAREK K, MICHALIK M, DIAZ U, CHMIELARZ L. Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH3-SCR and NH3-SCO processes[J]. Microporous Mesoporous Mater, 2017,246:193-206. doi: 10.1016/j.micromeso.2017.03.017

    16. [16]

      SU Ya-xin, DENG Wen-yi, SU A-long. NO reduction by methane over iron oxides and the mechanism[J]. J Fuel Chem Technol, 2013,41(9):1129-1135. doi: 10.3969/j.issn.0253-2409.2013.09.016 

    17. [17]

      KIM I H, PARK E J, PARK C H, HAN S W, SEO H O, KIM Y D. Activity of catalysts consisting of Fe2O3 nanoparticles decorating entire internal structure of mesoporous Al2O3 bead for toluene total oxidation[J]. Catal Today, 2017,295:56-64. doi: 10.1016/j.cattod.2017.03.023

    18. [18]

      ZHANG X D, YANG Y, SONG L, WANG Y, HE C, WANG Z, CUI L F. High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation[J]. Mol Catal, 2018,447:80-89. doi: 10.1016/j.mcat.2018.01.007

    19. [19]

      GORA-MAREK K, BRYLEWSKA K, TARACH K A, RUTKOWSKA M, JABLONSKA M, CHOI M, CHMIELARZ L. IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes[J]. Appl Catal B:Environ, 2015,179:589-598. doi: 10.1016/j.apcatb.2015.05.053

    20. [20]

      MACINA D, OPILA A, RUTKOWSKA M, BASAG S, PIWOWARSKA Z, MICHALIK M, CHMIELARZ L. Mesoporous silica materials modified with aggregated transition metal species (Cr, Fe and Cr-Fe) in the role of catalysts for selective catalytic oxidation of ammonia to dinitrogen[J]. Mater Chem Phys, 2017,187:60-71. doi: 10.1016/j.matchemphys.2016.11.047

    21. [21]

      CUI X Z, CHEN L S, WANG Y X, CHEN H R, ZHAO W R, LI Y S, SHI J L. Fabrication of hierarchically porous RuO2-CuO/Al-ZrO2 composite as highly efficient catalyst for ammonia-selective catalytic oxidation[J]. ACS Catal, 2014,4(7):2195-2206. doi: 10.1021/cs500421x

    22. [22]

      CUI X Z, ZHOU J, YE Z, CHEN H, LI L, RUAN M, SHI J. Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/RuO2 synthesized by co-nanocasting-replication method[J]. J Catal, 2010,270(2):310-317. doi: 10.1016/j.jcat.2010.01.005

    23. [23]

      JIANG W D, XU B, XIANG Z, LIU X Q, LIU F. Preparation and reactivity of UV light-reduced Pd/α-Fe2O3 catalyst towards the hydrogenation of o-chloronitrobenzene[J]. Appl Catal A:Gen, 2016,520:65-72.  

    24. [24]

      LV Jin-yu, LIN Zhi-dong, ZENG Wen. Preparation and electrochemical characterization of RuO2/polyaniline composite electrode[J]. J Wuhan Eng Univ, 2008,30(1):62-65. doi: 10.3969/j.issn.1674-2869.2008.01.018

    25. [25]

      ZHAO B H, RAN R, GUO X G, CAO L, XU T F, CHEN Z, WU X D, SI Z C, WENG D. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature[J]. Appl Catal A:Gen, 2017,545:64-71. doi: 10.1016/j.apcata.2017.07.024

    26. [26]

      QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017,45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012 

    27. [27]

      CHANG F W, ROSELIN L S, OU T C. Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe2O3 catalysts[J]. Appl Catal A:Gen, 2008,334(1/2):147-155.  

    28. [28]

      IMAMURA S, SAWADA H, UEMURA K, ISHIDA S. Oxidation of carbon monoxide catalyzed by manganese-silver composite oxides[J]. J Catal, 1988,109(1):198-205.  

    29. [29]

      ANG S J, LI J H. WANG C Z, CHEN J H, MA L, CHANG H Z, CHEN L, PENG Y, YAN N Q. Fe-Ti spinel for the selective catalytic reduction of NO with NH3:Mechanism and structure-activity relationship[J]. Appl Catal B:Environ, 2012,117-118:73-80. doi: 10.1016/j.apcatb.2012.01.001

    30. [30]

      GU T T, JIN R B, LIU Y, LIU H F, WENG X L, WU Z B. Promoting effect of calcium doping on the performances of MnOx/TiO2 catalysts for NO reduction with NH3 at low temperature[J]. Appl Catal B:Environ, 2013,129:30-38.  

    31. [31]

      GAO G, SHI J W, FAN Z Y, GAO C, NIU C M. MnM2O4 microspheres (M=Co, Cu, Ni) for selective catalytic reduction of NO with NH3:Comparative study on catalytic activity and reaction mechanism via in-situ diffuse reflectance infrared Fourier transform spectroscopy[J]. Chem Eng J, 2017,325:91-100.  

    32. [32]

      PENG Y, LI K Z, LI J H. Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3:An in situ IR and Raman spectroscopy study[J]. Appl Catal B:Environ, 2013,140-141:483-492. doi: 10.1016/j.apcatb.2013.04.043

    33. [33]

      HU W S, ZHANG Y H, LIU S J, ZHENG C H, GAO X, NOVA I, TRONCONI E. Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3[J]. Appl Catal B:Environ, 2017,206:449-460. doi: 10.1016/j.apcatb.2017.01.036

    34. [34]

      DEBEILA M A, COVILLE N J, SCURRELL M S, HEARNE G R. The effect of calcination temperature on the adsorption of nitric oxide on Au-TiO2:Drifts studies[J]. Appl Catal A:Gen, 2005,291(1/2):98-115.  

    35. [35]

      FANG D, HE F, LIU X Q, QI K, XIE J L, LI F X, YU C Q. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst:Promotional effect of Mg doping[J]. Appl Surf Sci, 2018,427:45-55. doi: 10.1016/j.apsusc.2017.08.088

    36. [36]

      ZHANG Q L, WANG H M, NING P, SONG Z X, LIU X, DUAN Y K. In situ DRIFTS studies on CuO-Fe2O3 catalysts for low temperature selective catalytic oxidation of ammonia to nitrogen[J]. Appl Surf Sci, 2017,419:733-743.  

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    4. [4]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    9. [9]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    18. [18]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

    19. [19]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(5)
  • Abstract views(704)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return