Citation: Wang Shiwen, Gao Hongge, Zheng Huaiyang, Wang Fang, Luo Hewei, Wu Shide, Zhang Yong. Progress in Vanadium-Based Oxides Cathode Materials for Aqueous Zinc-Ion Batteries[J]. Chemistry, ;2020, 83(10): 891-896, 939. shu

Progress in Vanadium-Based Oxides Cathode Materials for Aqueous Zinc-Ion Batteries

  • Corresponding author: Wang Shiwen, wshwory@zzuli.edu.cn
  • Received Date: 8 April 2020
    Accepted Date: 18 May 2020

Figures(6)

  • Aqueous zinc-ion batteries (AZIBs) have been paid increasing attention by researchers because of its advantages of low cost, high safety and environmental friendliness. In recent years, vanadium-based oxides have been considered as potential cathode materials for AZIBs due to their wide variety of oxides, high theoretical capacity and excellent rate performance. In this paper, the structural characteristics and advance of vanadium-based oxides mainly encompassing V2O5 and VO2 as cathode materials for AZIBs are reviewed. The key problems faced by vanadium-based oxides in AZIBs and the corresponding solutions are highlighted. Also, the future research trends of vanadium-based oxides as zinc storage materials was prospected.
  • 加载中
    1. [1]

      Pan H L, Shao Y Y, Yan P F, et al. Nat. Energy, 2016, 1: 16039. 

    2. [2]

      Xu C J, Li B H, Du H D, et al. Angew. Chem. Int. Ed., 2012, 51(4): 933-935. 

    3. [3]

      Yu P, Zeng Y X, Zhang H Z, et al. Small, 2019, 15(7): 1804760. 

    4. [4]

      Zhang N, Cheng F Y, Liu J X, et al. Nat. Commum., 2017, 8: 405. 

    5. [5]

      Li H F, Ma L T, Han C P, et al. Nano Energy, 2019, 62: 550-587. 

    6. [6]

      Wang F, Borodin O, Gao T, et al. Nat. Mater., 2018, 17(6): 543-549. 

    7. [7]

      Kim Y M, Choi S, Choi J W. J. Korean Electrochem. Soc., 2019, 22(1): 13-21.

    8. [8]

      Zhang L Y, Chen L, Zhou X F, et al. Adv. Energy Mater., 2015, 5(2): 1400930. 

    9. [9]

      Liu Z, Pulletikurthi G, Endres F. ACS Appl. Mater. Interf., 2016, 8(19): 12158-12164. 

    10. [10]

      Alfaruqi M H, Mathew V, Gim J, et al. Chem. Mater., 2015, 27(10): 3609-3620. 

    11. [11]

      Hertzberg B J, Huang A, Hsieh A, et al. Chem. Mater., 2016, 28(13): 4536-4545. 

    12. [12]

      Jin Y, Zhou L F, Liu L L, et al. Adv. Mater., 2019, 31(29): 1900567. 

    13. [13]

      Hu P, Yan M Y, Zhu T, et al. ACS Appl. Mater. Interf., 2017, 9(49): 42717-42722. 

    14. [14]

      He P, Yan M Y, Zhang G B, et al. Adv. Energy Mater., 2017, 7(11): 1601920. 

    15. [15]

      Hu P, Zhu T, Wang X P, et al. Nano Lett., 2018, 18(3): 1758-1763. 

    16. [16]

      Liang Y L, Jing Y, Gheytani S, et al. Nat. Mater., 2017, 16(8): 841-848. 

    17. [17]

      Kundu D, Oberholzer P, Glaros C, et al. Chem. Mater., 2018, 30(11): 3874-3881. 

    18. [18]

      Zhao Q, Huang W W, Luo Z Q, et al. Sci. Adv., 2018, 4(3): eaao1761.

    19. [19]

    20. [20]

      Xu W W, Wang Y. Nano-Micro Lett., 2019, 11: 90. 

    21. [21]

      Selvakumaran D, Pan A Q, Liang S Q, et al. J. Mater. Chem. A, 2019, 7(31): 18209-18236. 

    22. [22]

    23. [23]

    24. [24]

      Li H Q, He P, Wang Y G, et al. J. Mater. Chem., 2011, 21: 10999-11009. 

    25. [25]

      Li X Y, Liu C F, Zhang C K, et al. ACS Appl. Mater. Interf., 2016, 8(37): 24629-24637. 

    26. [26]

    27. [27]

      Liu Q, Tan G Q, Wang P, et al. Nano Energy, 2017, 36: 197-205. 

    28. [28]

      Niu C J, Meng J S, Han C H, et al. Nano Lett., 2014, 14(5): 2873-2878. 

    29. [29]

      Chao D L, Zhu C R, Xia X H, et al. Nano Lett., 2015, 15(1): 565-573. 

    30. [30]

      Pei C Y, Xiong F Y, Sheng J Z, et al. ACS Appl. Mater. Interf., 2017, 9(20): 17061-17067.

    31. [31]

    32. [32]

      Zhang N, Dong Y, Jia M, et al. ACS Energy Lett., 2018, 3(6): 1366-1372. 

    33. [33]

      Hu P, Zhu T, Wang X, et al. Nano Lett., 2018, 18(3): 1758-1763. 

    34. [34]

      Wan F, Zhang L L, Dai X, et al. Nat. Commun., 2018, 9: 1656. 

    35. [35]

      Wang P J, Shi X D, Wu Z X, et al. Carbon Energy, 2020, 1-8.

    36. [36]

      Yang G Z, Li Q, Ma K X, et al. J. Mater. Chem. A, 2020. DOI: 10.1039/D0TA00615G.

    37. [37]

      Wang X, Xi B J, Ma X J, et al. Nano Lett., 2020. DOI: 10.1021/acs.Nanolett.0c00732.

    38. [38]

      Song M, Tan H, Chao D L, et al. Adv. Funct. Mater., 2018, 28(41): 1802564. 

    39. [39]

      Fang G Z, Zhou J, Pan A Q, et al. ACS Energy Lett. 2018, 3: 2480-2501.

    40. [40]

      Tian M, Liu C F, Zheng J Q, et al. Energy Storage Mater., 2020. DOI: 10.1016/j.ensm.2020.03.024.

    41. [41]

      Yang Y Q, Tang Y, Fang G Z, et al. Energy Environ. Sci., 2018, 11(11): 3157-3162. 

    42. [42]

      He P, Zhang G B, Liao X B, et al. Adv. Energy Mater., 2018, 8(10), 1702463.

    43. [43]

      Wan F, Niu Z Q. Angew. Chem. Int. Ed., 2019, 58(46): 16358-16367. 

    44. [44]

      Kundu D, Adams B D, Duffort V, et al. Nat. Energy, 2016, 1: 16119. 

    45. [45]

      Xia C, Guo J, Li P, et al. Angew. Chem. Int. Ed., 2018, 57(15): 3943-3948. 

    46. [46]

      Yang Y Q, Tang Y, Fang G Z, et al. Energy Environ. Sci., 2018, 11(11): 3157-3162. 

    47. [47]

      Tao B W, Liu J H, Li S M, et al. Acta Phys. Chim. Sin., 2005, 21(3): 338-342. 

    48. [48]

      Yan M Y, He P, Chen Y, et al. Adv. Mater., 2018, 30(1): 1703725. 

    49. [49]

      Yin B S, Zhang S W, Ke K, et al. Nanoscale, 2019, 11: 19723-19728. 

    50. [50]

      Zhang L, Rodríguez-Pérez I A, Jiang H, et al. Adv. Funct. Mater., 2019, 29(30): 1902653. 

    51. [51]

      Ding J W, Du Z G, Gu L Q, et al. Adv. Mater., 2018, 30(26): 1800762. 

    52. [52]

      Wei T Y, Li Q, Yang G Z, et al. Mater. Chem. A, 2018, 6(17): 8006-8012. 

    53. [53]

      Li Z L, Ganapathy S, Xu Y L, et al. Adv. Energy Mater., 2019, 9(22): 1900237. 

    54. [54]

      Chen L N, Ruan Y S, Zhang G B, et al. Chem. Mater., 2019, 31(14): 5342-5342. 

    55. [55]

      Chen L L, Yang Z H, Huang Y G. Nanoscale, 2019, 11(27): 13032-13039. 

    56. [56]

      Zhang Y F, Zheng J Q, Hu T, et al. Appl. Surf. Sci., 2016, 371: 189-195. 

    57. [57]

      Dai X, Wan F, Zhang L L, et al. Energy Storage Mater., 2019, 17: 143-150. 

    58. [58]

      Li X L, Ma L T, Zhao Y W, et al. Mater. Today Energy, 2019, 14: UNSP 100361.

    59. [59]

      Li H F, Han C P, Yan H, et al. Energy Environ. Sci., 2018, 11: 941-951. 

    60. [60]

      Ma L T, Li N, Long C B, et al. Adv. Funct. Mater., 2019, 29(46): 1906142. 

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    3. [3]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    16. [16]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    17. [17]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    18. [18]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(245)
  • Abstract views(8505)
  • HTML views(4155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return