Citation: Fan Haochen, Huang Jinhua, Jiang Kejian, Song Yanlin, Zhou Xueqin. All Solution-Processed Planar Heterojunction Organic Solar Cells Using A Highly Crystalline Squaraine Dye[J]. Chemistry, ;2020, 83(11): 1007-1013. shu

All Solution-Processed Planar Heterojunction Organic Solar Cells Using A Highly Crystalline Squaraine Dye

Figures(9)

  • Highly crystalline organic semiconductors with close molecular stacking could hold high charge mobility but low solubility in common organic solvents, limiting their solution processability for organic optoelectronics. Herein, a methyl-decorated high-crystalline squaraine dye (DM-SQ) is synthesized, and a highly crystalline thin film is solution-deposited using trifluoroacetic acid (TFA) as solvent. The resultant film shows a higher hole mobility as compared with that of the vacuum-deposited film (5.28×10-4 vs. 7.53×10-5 cm2·V-1·s-1). With DM-SQ as donor and PC61BM (phenyl-C61-butyric acid methyl ester) as acceptor, the solution-processed planar heterojunction solar cells exhibit an average power conversion efficiency of 6.08±0.19%, higher than 3.56±0.22% for the vacuum-deposited devices.
  • 加载中
    1. [1]

      (a) Mathews I, Kantareddy S N, Buonassisi T, et al. Joule, 2019, 3: 1415~1426; (b) Chen F C. Adv. Opt. Mater., 2019, 7: 1800662; (c) Reynaud C A, Clerc R, Lechene P B, et al. Sol. Energy Mater. Sol. Cells, 2019, 200: 110010; (d) Cui Y, Wang Y, Bergqvist J, et al. Nat. Energy., 2019, 5: 768~775; (e) Ding Z, Zhao R, Yu Y, et al. J. Mater. Chem. A, 2019, 7: 26533~26539; (f) Gasparini N, Salvador M, Heumueller T, et al. Adv. Energy Mater., 2017, 7: 1701561; (g) Cui Y, Yao H, Zhang J, et al. Nat. Commun., 2019, 10: 2515.

    2. [2]

      (a) Cui Y, Yao H, Hong L, et al. Natl. Sci. Rev., 2020, 7(7): 1239~1246; (b) Lin Y, Adilbekova B, Firdaus Y, et al. Adv. Mater., 2019, 31: 1902965; (c) Meng L, Zhang Y, Wan X, et al. Science, 2018, 361: 1094~1098.

    3. [3]

      (a) Keil D, Hartmann H, Moschny T. Dyes Pigm., 1991, 17: 19~27; (b) Sreejith S, Carol P, Chithra P, et al. J. Mater. Chem., 2008, 18: 264~274.

    4. [4]

      (a) Law K Y. Chem. Rev., 1993, 93: 449~486; (b) Law K Y, Bailey F C. J. Org. Chem., 1992, 57: 3278~3286; (c) Law K Y. J. Phys. Chem., 1987, 91: 5184~5193.

    5. [5]

      Chen C T, Marder S R, Cheng L T. J. Chem. Soc., Chem. Commun., 1994: 259~260.

    6. [6]

      (a) Chen C T, Marder S R, Cheng L T. J. Am. Chem. Soc., 1994, 116: 3117~3118; (b) Beverina L, Crippa M, Salice P, et al. Chem. Mater., 2008, 20: 3242~3244.

    7. [7]

      Chen G, Sasabe H, Igarashi T, et al. J. Mater. Chem. A, 2015, 3: 14517~14534

    8. [8]

      (a) Wang S, Mayo E I, Perez M D, et al. Appl. Phys. Lett., 2009, 94: 233304; (b) Wei G, Lunt R R, Sun K, et al. Nano Lett., 2010, 10: 3555~3559; (c) Wei G D, Wang S, Renshaw K, et al. ACS Nano, 2010, 4: 1927~1934; (d) Wei G, Wang S, Sun K, et al. Adv. Energy Mater., 2011, 1: 184~187; (e) Wei G, Xiao X, Wang S, et al. Nano Lett., 2011, 11: 4261~4264; (f) Chen G, Sasabe H, Wang Z, et al. Phys. Chem. Chem. Phys., 2012, 14: 14661~14666; (g) Chen G, Yokoyama D, Sasabe H, et al. Appl. Phys. Lett., 2012, 101: 083904; (h) Wei G, Xiao X, Wang S, et al. ACS Nano, 2012, 6: 972~978; (i) Xiao X, Wei G, Wang S, et al. Adv. Mater., 2012, 24: 1956~1960; (j) Zimmerman J D, Lassiter B E, Xiao X, et al. ACS Nano, 2013, 7: 9268~9275; (k) Chen G, Sasabe H, Lu W, et al. J. Mater. Chem. C, 2013, 1: 6547~6552. (l) Sasabe H, Igrashi T, Sasaki Y, et al. RSC Adv., 2014, 4: 42804~42807; (m) Karak S, Homnick P J, Pelle A M D, et al. ACS Appl. Mater. Interf., 2014, 6: 11376~11384; (n) Chen G, Sasabe H, Sasaki Y, et al. Chem. Mater., 2014, 26: 1356~1364.

    9. [9]

      (a) Kang I, Yun H J, Chung D S, et al. J. Am. Chem. Soc., 2013, 135: 14896~14899; (b) Kang B, Kim R, Lee S B, et al. J. Am. Chem. Soc., 2016, 138: 3679~3686.

    10. [10]

      Law K Y, Facci J S, Bailey F C, et al. J. Imaging Sci., 1990, 34: 31.

    11. [11]

      Schena A, Johnsson K. Angew. Chem. Int. Ed., 2014, 53: 1302~1305.

    12. [12]

      Yan Z, Guang S, Xu H, et al. RSC Adv., 2013, 3: 8021~8027.

    13. [13]

      Dacuna J, Salleo A. Phys. Rev. B, 2011, 84: 195209.

  • 加载中
    1. [1]

      Yingfen LiZhiqi WangYunhai ZhaoDajun LuoXueliang ZhangJun ZhaoZhenghua SuShuo ChenGuangxing Liang . Potassium doping for grain boundary passivation and defect suppression enables highly-efficient kesterite solar cells. Chinese Chemical Letters, 2024, 35(11): 109468-. doi: 10.1016/j.cclet.2023.109468

    2. [2]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    3. [3]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    6. [6]

      Xiaoya CuiYanchang LiuQiang LiHe ZhuShibo XiJianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069

    7. [7]

      Sheng TangMingyue LiaoWeihai SunJihuai WuJiamin LuYiming Xie . Optimizing CsPbBr3 perovskite solar cell interface and performance through tetraphenylethene derivatives. Chinese Chemical Letters, 2025, 36(6): 110838-. doi: 10.1016/j.cclet.2025.110838

    8. [8]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    9. [9]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    10. [10]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    11. [11]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Xiao-Fang LvXiao-Yun RanYu ZhaoRui-Rui ZhangLi-Na ZhangJing ShiJi-Xuan XuQing-Quan KongXiao-Qi YuKun Li . Combing NIR-Ⅱ molecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6% photothermal conversion efficiency. Chinese Chemical Letters, 2025, 36(4): 110027-. doi: 10.1016/j.cclet.2024.110027

    14. [14]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    15. [15]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    16. [16]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    17. [17]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    18. [18]

      Yiming FangHuimin GaoKaiting ChengLiang BaiZhengtong LiYadong ZhaoXingtao Xu . An overview of photothermal materials for solar-driven interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 109925-. doi: 10.1016/j.cclet.2024.109925

    19. [19]

      Xiaoyu Zhang Xin Yu . Solar-powered heterogeneous water disinfection nano-system. Chinese Journal of Structural Chemistry, 2025, 44(3): 100439-100439. doi: 10.1016/j.cjsc.2024.100439

    20. [20]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

Metrics
  • PDF Downloads(6)
  • Abstract views(1135)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return