Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas
- Corresponding author: WANG Hui, wanghh@sari.ac.cn
Citation:
LIAO Pei-yi, ZHANG Chen, ZHANG Li-jun, YANG Yan-zhang, ZHONG Liang-shu, WANG Hui, SUN Yu-han. Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(5): 547-555.
ANDERSSON R, BOUTONNET M, JARAS S. Correlation patterns and effect of syngas conversion level for product selectivity to alcohols and hydrocarbons over molybdenum sulfide based catalysts[J]. Appl Catal A: Gen, 2012,417/418(3):119-128.
ANDERSSON R, BOUTONNET M, JARAS S. Effect of CO2 in the synthesis of mixed alcohols from syngas over a K/Ni/MoS2 catalyst[J]. Fuel, 2013,107:715-723. doi: 10.1016/j.fuel.2012.11.044
XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J]. J Mol Catal A: Chem, 2005,234(1/2):75-83.
LIN M, FANG K, LI D, SUN Y H. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008,9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004
XU R, ZHANG S, ROBERTS C B. Mixed alcohol synthesis over a K promoted Cu/ZnO/Al2O3 catalyst in supercritical hexanes[J]. Ind Eng Chem Res, 2013,52(41):14514-14524. doi: 10.1021/ie3024017
YANG X, WEI Y, SU Y, ZHOU L. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032
HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d
SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.
SLAA J C, OMMEN J G V, ROSS J R H. The synthesis of alcohols using Cu/ZnO/Al2O3 (Ce or Mn) catalysts[J]. Top Catal, 1995,2(1):79-89.
SLAA J C, OMMEN J G V, ROSS J R H. The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts[J]. Catal Today, 1992,15(1):129-148. doi: 10.1016/0920-5861(92)80125-7
HERMAN R G. Advances in catalytic synthesis and utilization of higher alcohols[J]. Catal Today, 2000,55(3):233-245. doi: 10.1016/S0920-5861(99)00246-1
ZHANG Q W, LI X H, FUJIMOTO K R. Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J]. Appl Catal A: Gen, 2006,309(1):28-32. doi: 10.1016/j.apcata.2006.04.026
SMITH K J, ANDERSON R B. A chain growth scheme for the higher alcohols synthesis[J]. J Catal, 1984,85(2):428-436. doi: 10.1016/0021-9517(84)90232-X
MEI D, ROUSSEAU R, KATHMANN S M, GLEZAKOU V A, ENGELHARD M H, JIANG W, WANG C, GERBER M, WHITE J, STEVENS D. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study[J]. J Catal, 2010,271(2):325-342. doi: 10.1016/j.jcat.2010.02.020
PRIETO G, CONCEPCION P, MARTINEZ A, MENDOZA E. New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas[J]. J Catal, 2011,280(2):274-288. doi: 10.1016/j.jcat.2011.03.025
LI Z R, XIE Y N. Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J]. Catal Lett, 2000,65(1):43-48.
SHI X R, JIAO H, HERMANN K, WANG J. CO hydrogenation reaction on sulfided molybdenum catalysts[J]. J Mol Catal A: Chem, 2009,312(1/2):7-17.
XIANG M L, LI D B, XIAO H C, ZHANG J L, QI H J, LI W H, ZHONG B, SUN Y H. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/beta-Mo2C catalysts[J]. Fuel, 2008,87(4/5):599-603.
LIU C C, LIN M G, FANG K G, SUN Y H. Preparation of nanostructured molybdenum carbides for CO hydrogenation[J]. RSC Adv, 2014,144(4):20948-20954.
DING M, LIU J, ZHANG Q, TSUBAKI N, WANG T, MA L L. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis[J]. Catal Commun, 2012,28:138-142. doi: 10.1016/j.catcom.2012.08.027
DING M Y, QIU M H, LIU J G, LI Y P, WANG T J, MA L L, WU C Z. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for highe alcohols synthesis[J]. Fuel, 2013,109(7):21-27.
WANG Ye. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation[D]. Fujian: Xiamen University, 2012.
WANG J, CHERNAVSKⅡ P A, WANG Y, KHODAKOV A Y. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013,103(1):1111-1122.
FANG K, LI D, LIN M, XIANG M, WEI W, SUN Y H. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today, 2009,147(2):133-138. doi: 10.1016/j.cattod.2009.01.038
GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g
LU Y, YU F, HU J, LIU J. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst[J]. Appl Catal A: Gen, 2012,429-430(25):48-58.
LIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han. Effect of Zn and Mn promoters on copper-iron based catalysts for higher alcohol synthesis[J]. Acta Phys Chem Sin, 2008, 24(5): 833-838.
LUK H T, MONDELLI C, FERRÉ D C, STEWART J A, PÉREZ-RAMÍREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A
LU Y, CAO B, YU F, LIU J, BAO Z, GAO J. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014,6(2):473-478. doi: 10.1002/cctc.v6.2
HAN X Y, FANG K G, SUN Y H. Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas[J]. RSC Adv, 2015,5(64):51868-51874. doi: 10.1039/C5RA05846E
HAN X Y, FANG K G, ZHOU J, ZHAO L, SUN Y H. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides[J]. J Colloid Interf Sci, 2016,470(6):162-171.
DING M Y, TU J L, QIU M H, WANG T J, MA L L, LI Y P. Impact of potassium promoter on Cu-Fe based mixed alcohols synthesis catalyst[J]. Appl Energy, 2015,138:584-589. doi: 10.1016/j.apenergy.2014.01.010
XIANG Y Z, CHITRY V, LIDDICOAT P, FELFER P, CAIRNEY J, RINGER S, KRUSE N. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. J Am Chem Soc, 2013,135(19):7114-7117. doi: 10.1021/ja402512r
SMIT E D, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008,37(12):2758-2781. doi: 10.1039/b805427d
MUNNIK P, DE JONGHP E, DE JONGK P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis[J]. J Am Chem Soc, 2014,136(20):7333-7340. doi: 10.1021/ja500436y
SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 1999,186(1/2):3-12.
NEWSOME D S. Water-gas shift reaction[J]. Catal Rev, 1980,21(2):275-318. doi: 10.1080/03602458008067535
HALL W K, KOKES R J, EMMETT P H. Mechanism studies of the Fischer-Tropsch synthesis-the addition of radioactive methanol, carbon dioxide and gaseous formaldehyde[J]. J Am Chem Soc, 1957,79(12):2983-2989. doi: 10.1021/ja01569a001
XU L G, BAO S Q, HOUPT D J, LAMBERT S H, DAVIS B H. Role of CO2 in the initiation of chain growth and alcohol formation during the Fischer-Tropsch synthesis[J]. Catal Today, 1997,36(3):347-355. doi: 10.1016/S0920-5861(96)00244-1
LU G, ZHANG C F, CANG Y Q, ZHU Z B, NI Y H, CHEN L J, YU F. Synthesis of mixed alcohols from CO2 contained syngas on supported molybdenum sulfide catalysts[J]. Appl Catal A: Gen, 1997,150(2):243-252. doi: 10.1016/S0926-860X(96)00285-2
DING M Y, QIU M H, WANG T J, MA L L, WU C Z, LIU J G. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis[J]. Appl Energy, 2012,97(9):543-547.
SHI L M, CHU W. Catalytic properties for higher-alcohol synthesis of CuCo based catalysts promoted by transition elements (Zn, Mo)[J]. J Mol Catal A: Chem, 2011,25(4):316-321.
LIU J G, DING M Y, WANG T J, MA L L. Promoting effect of cobalt addition on higher alcohols synthesis over copper-based catalysts[J]. Adv Mater Res, 2012,550/553:270-275. doi: 10.4028/www.scientific.net/AMR.550-553
MIRANDA L S, ANDREW C, JAMES J S. Reduction processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts[J]. Catal Today, 2012,182(1):60-66. doi: 10.1016/j.cattod.2011.07.026
DING M Y, YANG Y, WU B S, LI Y W, WANG T J, MA L L. Study on reduction and carburization behaviors of iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2014,61(10):2267-2270.
CORTES J, DROGUETT S. Temperature programmed desorption of CO from supported cobalt[J]. J Catal, 1975,38(s1/s3):477-481.
CHENG X, WANG L, WANG Z, ZHANG M, MA C. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts[J]. Ind Eng Chem Res, 2016,55(50):12710-12722. doi: 10.1021/acs.iecr.6b00804
AN X, WU B S, WAN H J, LI T Z, TAO Z C, XIANG H W, LI Y W. Comparative study of iron-based Fischer-Tropsch synthesis catalyst promoted with potassium or sodium[J]. Catal Commun, 2007,8(12):1957-1962. doi: 10.1016/j.catcom.2007.03.016
ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006,237(2):405-415. doi: 10.1016/j.jcat.2005.11.004
WANG J, CHERNAVSKⅡ P A, WANG Y, KHODAKOV A Y. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013,103:1111-1122. doi: 10.1016/j.fuel.2012.07.055
XIANG Y, KRUSE N. Tuning the catalytic CO hydrogenation to straight-and long-chain aldehydes/alcohols and olefins/paraffins[J]. Nat Commun, 2016,713058. doi: 10.1038/ncomms13058
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Li Li , Fanpeng Chen , Bohang Zhao , Yifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Yaoyin Lou , Xiaoyang Jerry Huang , Kuang-Min Zhao , Mark J. Douthwaite , Tingting Fan , Fa Lu , Ouardia Akdim , Na Tian , Shigang Sun , Graham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Zhen Zhang , Xue-ling Chen , Xiu-Mei Xie , Tian-Yu Gao , Jing Qin , Jun-Jie Li , Chao Feng , Da-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Xiujuan Wang , Yijie Wang , Luyun Cui , Wenqiang Gao , Xiao Li , Hong Liu , Weijia Zhou , Jingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Yiwen Xu , Chaozheng He , Chenxu Zhao , Ling Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797
Xiaodan Wang , Yingnan Liu , Zhibin Liu , Zhongjian Li , Tao Zhang , Yi Cheng , Lecheng Lei , Bin Yang , Yang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Yueying Yang , Huiru Xie , Xinbo Yu , Yang Liu , Hui Wang , Hua Li , Lixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570