Citation: LIAO Pei-yi, ZHANG Chen, ZHANG Li-jun, YANG Yan-zhang, ZHONG Liang-shu, WANG Hui, SUN Yu-han. Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 547-555. shu

Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas

  • Corresponding author: WANG Hui, wanghh@sari.ac.cn
  • Received Date: 6 January 2017
    Revised Date: 10 March 2017

    Fund Project: the National Science Foundation for Young Scientists of China 21403278

Figures(7)

  • The effect of various promoting additives (Mn, Zn, Co) on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas was investigated. The results of nitrogen physisorption, XRD and H2-TPR characterization show that these additives can reduce the particle size and enhance the surface basicity and the adsorption capacity towards CO. Especially, the doping of Zn in the CuFeZr catalyst can effectively enhance the interaction between Cu and Fe, strengthen the surface basicity, and improve the reducibility and CO adsorption ability. For the synthesis of higher alcohol from syngas over the CuFeZr catalyst, the catalytic evaluation results in a fixed bed reactor illustrate that the activity and selectivity to alcohols are greatly enhanced by the addition of Zn promoter; the space time yield (STY) of ROH is increased from 0.026 to 0.071 g/(gcat·h). Meanwhile, it was found that CO2 in the feed can improve the CO conversion as well as the STY to alcohols and hydrocarbons, but suppress the chain growth and decrease the ratio of olefin to paraffin; proper amount of CO2 (2.5%) is beneficial to the formation of alcohols and hydrocarbons of short chains.
  • 加载中
    1. [1]

      ANDERSSON R, BOUTONNET M, JARAS S. Correlation patterns and effect of syngas conversion level for product selectivity to alcohols and hydrocarbons over molybdenum sulfide based catalysts[J]. Appl Catal A: Gen, 2012,417/418(3):119-128.  

    2. [2]

      ANDERSSON R, BOUTONNET M, JARAS S. Effect of CO2 in the synthesis of mixed alcohols from syngas over a K/Ni/MoS2 catalyst[J]. Fuel, 2013,107:715-723. doi: 10.1016/j.fuel.2012.11.044

    3. [3]

      XU R, WEI W, LI W H, HU T D, SUN Y H. Fe modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas: Effect of calcination temperature[J]. J Mol Catal A: Chem, 2005,234(1/2):75-83.  

    4. [4]

      LIN M, FANG K, LI D, SUN Y H. CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts[J]. Catal Commun, 2008,9(9):1869-1873. doi: 10.1016/j.catcom.2008.03.004

    5. [5]

      XU R, ZHANG S, ROBERTS C B. Mixed alcohol synthesis over a K promoted Cu/ZnO/Al2O3 catalyst in supercritical hexanes[J]. Ind Eng Chem Res, 2013,52(41):14514-14524. doi: 10.1021/ie3024017

    6. [6]

      YANG X, WEI Y, SU Y, ZHOU L. Characterization of fused Fe-Cu based catalyst for higher alcohols synthesis and DRIFTS investigation of TPSR[J]. Fuel Process Technol, 2010,91(9):1168-1173. doi: 10.1016/j.fuproc.2010.03.032

    7. [7]

      HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering[J]. Chem Rev, 2006,106(9):4044-4098. doi: 10.1021/cr068360d

    8. [8]

      SUBRAMANI V, GANGWAL S K. A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol[J]. Energy Fuels, 2008,22(2):117-136.  

    9. [9]

      SLAA J C, OMMEN J G V, ROSS J R H. The synthesis of alcohols using Cu/ZnO/Al2O3 (Ce or Mn) catalysts[J]. Top Catal, 1995,2(1):79-89.  

    10. [10]

      SLAA J C, OMMEN J G V, ROSS J R H. The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts[J]. Catal Today, 1992,15(1):129-148. doi: 10.1016/0920-5861(92)80125-7

    11. [11]

      HERMAN R G. Advances in catalytic synthesis and utilization of higher alcohols[J]. Catal Today, 2000,55(3):233-245. doi: 10.1016/S0920-5861(99)00246-1

    12. [12]

      ZHANG Q W, LI X H, FUJIMOTO K R. Pd-promoted Cr/ZnO catalyst for synthesis of methanol from syngas[J]. Appl Catal A: Gen, 2006,309(1):28-32. doi: 10.1016/j.apcata.2006.04.026

    13. [13]

      SMITH K J, ANDERSON R B. A chain growth scheme for the higher alcohols synthesis[J]. J Catal, 1984,85(2):428-436. doi: 10.1016/0021-9517(84)90232-X

    14. [14]

      MEI D, ROUSSEAU R, KATHMANN S M, GLEZAKOU V A, ENGELHARD M H, JIANG W, WANG C, GERBER M, WHITE J, STEVENS D. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study[J]. J Catal, 2010,271(2):325-342. doi: 10.1016/j.jcat.2010.02.020

    15. [15]

      PRIETO G, CONCEPCION P, MARTINEZ A, MENDOZA E. New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas[J]. J Catal, 2011,280(2):274-288. doi: 10.1016/j.jcat.2011.03.025

    16. [16]

      LI Z R, XIE Y N. Structures and performance of Pd-Mo-K/Al2O3 catalysts used for mixed alcohol synthesis from synthesis gas[J]. Catal Lett, 2000,65(1):43-48.  

    17. [17]

      SHI X R, JIAO H, HERMANN K, WANG J. CO hydrogenation reaction on sulfided molybdenum catalysts[J]. J Mol Catal A: Chem, 2009,312(1/2):7-17.  

    18. [18]

      XIANG M L, LI D B, XIAO H C, ZHANG J L, QI H J, LI W H, ZHONG B, SUN Y H. Synthesis of higher alcohols from syngas over Fischer-Tropsch elements modified K/beta-Mo2C catalysts[J]. Fuel, 2008,87(4/5):599-603.  

    19. [19]

      LIU C C, LIN M G, FANG K G, SUN Y H. Preparation of nanostructured molybdenum carbides for CO hydrogenation[J]. RSC Adv, 2014,144(4):20948-20954.  

    20. [20]

      DING M, LIU J, ZHANG Q, TSUBAKI N, WANG T, MA L L. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis[J]. Catal Commun, 2012,28:138-142. doi: 10.1016/j.catcom.2012.08.027

    21. [21]

      DING M Y, QIU M H, LIU J G, LI Y P, WANG T J, MA L L, WU C Z. Influence of manganese promoter on co-precipitated Fe-Cu based catalysts for highe alcohols synthesis[J]. Fuel, 2013,109(7):21-27.  

    22. [22]

      WANG Ye. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation[D]. Fujian: Xiamen University, 2012.

    23. [23]

      WANG J, CHERNAVSKⅡ P A, WANG Y, KHODAKOV A Y. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013,103(1):1111-1122.  

    24. [24]

      FANG K, LI D, LIN M, XIANG M, WEI W, SUN Y H. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas[J]. Catal Today, 2009,147(2):133-138. doi: 10.1016/j.cattod.2009.01.038

    25. [25]

      GAO W, ZHAO Y F, LIU J M, HUANG Q W, HE S, LI C M, ZHAO J W, WEI M. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catal Sci Technol, 2013,3(5):1324-1332. doi: 10.1039/c3cy00025g

    26. [26]

      LU Y, YU F, HU J, LIU J. Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst[J]. Appl Catal A: Gen, 2012,429-430(25):48-58.  

    27. [27]

      LIN Ming-gui, FANG Ke-gong, LI De-bao, SUN Yu-han. Effect of Zn and Mn promoters on copper-iron based catalysts for higher alcohol synthesis[J]. Acta Phys Chem Sin, 2008, 24(5): 833-838. 

    28. [28]

      LUK H T, MONDELLI C, FERRÉ D C, STEWART J A, PÉREZ-RAMÍREZ J. Status and prospects in higher alcohols synthesis from syngas[J]. Chem Soc Rev, 2017,46(5):1358-1426. doi: 10.1039/C6CS00324A

    29. [29]

      LU Y, CAO B, YU F, LIU J, BAO Z, GAO J. High selectivity higher alcohols synthesis from syngas over three-dimensionally ordered macroporous Cu-Fe catalysts[J]. ChemCatChem, 2014,6(2):473-478. doi: 10.1002/cctc.v6.2

    30. [30]

      HAN X Y, FANG K G, SUN Y H. Effects of metal promotion on CuMgFe catalysts derived from layered double hydroxides for higher alcohol synthesis via syngas[J]. RSC Adv, 2015,5(64):51868-51874. doi: 10.1039/C5RA05846E

    31. [31]

      HAN X Y, FANG K G, ZHOU J, ZHAO L, SUN Y H. Synthesis of higher alcohols over highly dispersed Cu-Fe based catalysts derived from layered double hydroxides[J]. J Colloid Interf Sci, 2016,470(6):162-171.  

    32. [32]

      DING M Y, TU J L, QIU M H, WANG T J, MA L L, LI Y P. Impact of potassium promoter on Cu-Fe based mixed alcohols synthesis catalyst[J]. Appl Energy, 2015,138:584-589. doi: 10.1016/j.apenergy.2014.01.010

    33. [33]

      XIANG Y Z, CHITRY V, LIDDICOAT P, FELFER P, CAIRNEY J, RINGER S, KRUSE N. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. J Am Chem Soc, 2013,135(19):7114-7117. doi: 10.1021/ja402512r

    34. [34]

      SMIT E D, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev, 2008,37(12):2758-2781. doi: 10.1039/b805427d

    35. [35]

      MUNNIK P, DE JONGHP E, DE JONGK P. Control and impact of the nanoscale distribution of supported cobalt particles used in Fischer-Tropsch catalysis[J]. J Am Chem Soc, 2014,136(20):7333-7340. doi: 10.1021/ja500436y

    36. [36]

      SCHULZ H. Short history and present trends of Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 1999,186(1/2):3-12.  

    37. [37]

      NEWSOME D S. Water-gas shift reaction[J]. Catal Rev, 1980,21(2):275-318. doi: 10.1080/03602458008067535

    38. [38]

      HALL W K, KOKES R J, EMMETT P H. Mechanism studies of the Fischer-Tropsch synthesis-the addition of radioactive methanol, carbon dioxide and gaseous formaldehyde[J]. J Am Chem Soc, 1957,79(12):2983-2989. doi: 10.1021/ja01569a001

    39. [39]

      XU L G, BAO S Q, HOUPT D J, LAMBERT S H, DAVIS B H. Role of CO2 in the initiation of chain growth and alcohol formation during the Fischer-Tropsch synthesis[J]. Catal Today, 1997,36(3):347-355. doi: 10.1016/S0920-5861(96)00244-1

    40. [40]

      LU G, ZHANG C F, CANG Y Q, ZHU Z B, NI Y H, CHEN L J, YU F. Synthesis of mixed alcohols from CO2 contained syngas on supported molybdenum sulfide catalysts[J]. Appl Catal A: Gen, 1997,150(2):243-252. doi: 10.1016/S0926-860X(96)00285-2

    41. [41]

      DING M Y, QIU M H, WANG T J, MA L L, WU C Z, LIU J G. Effect of iron promoter on structure and performance of CuMnZnO catalyst for higher alcohols synthesis[J]. Appl Energy, 2012,97(9):543-547.  

    42. [42]

      SHI L M, CHU W. Catalytic properties for higher-alcohol synthesis of CuCo based catalysts promoted by transition elements (Zn, Mo)[J]. J Mol Catal A: Chem, 2011,25(4):316-321.  

    43. [43]

      LIU J G, DING M Y, WANG T J, MA L L. Promoting effect of cobalt addition on higher alcohols synthesis over copper-based catalysts[J]. Adv Mater Res, 2012,550/553:270-275. doi: 10.4028/www.scientific.net/AMR.550-553

    44. [44]

      MIRANDA L S, ANDREW C, JAMES J S. Reduction processes in Cu/SiO2, Co/SiO2, and CuCo/SiO2 catalysts[J]. Catal Today, 2012,182(1):60-66. doi: 10.1016/j.cattod.2011.07.026

    45. [45]

      DING M Y, YANG Y, WU B S, LI Y W, WANG T J, MA L L. Study on reduction and carburization behaviors of iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy, 2014,61(10):2267-2270.  

    46. [46]

      CORTES J, DROGUETT S. Temperature programmed desorption of CO from supported cobalt[J]. J Catal, 1975,38(s1/s3):477-481.  

    47. [47]

      CHENG X, WANG L, WANG Z, ZHANG M, MA C. Catalytic performance of NO reduction by CO over activated semicoke supported Fe/Co catalysts[J]. Ind Eng Chem Res, 2016,55(50):12710-12722. doi: 10.1021/acs.iecr.6b00804

    48. [48]

      AN X, WU B S, WAN H J, LI T Z, TAO Z C, XIANG H W, LI Y W. Comparative study of iron-based Fischer-Tropsch synthesis catalyst promoted with potassium or sodium[J]. Catal Commun, 2007,8(12):1957-1962. doi: 10.1016/j.catcom.2007.03.016

    49. [49]

      ZHANG C H, YANG Y, TENG B T, LI T Z, ZHENG H Y, XIANG H W, LI Y W. Study of an iron-manganese Fischer-Tropsch synthesis catalyst promoted with copper[J]. J Catal, 2006,237(2):405-415. doi: 10.1016/j.jcat.2005.11.004

    50. [50]

      WANG J, CHERNAVSKⅡ P A, WANG Y, KHODAKOV A Y. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013,103:1111-1122. doi: 10.1016/j.fuel.2012.07.055

    51. [51]

      XIANG Y, KRUSE N. Tuning the catalytic CO hydrogenation to straight-and long-chain aldehydes/alcohols and olefins/paraffins[J]. Nat Commun, 2016,713058. doi: 10.1038/ncomms13058

  • 加载中
    1. [1]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    7. [7]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    8. [8]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    11. [11]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    12. [12]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    13. [13]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    14. [14]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    15. [15]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

    16. [16]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    17. [17]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    18. [18]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Yueying YangHuiru XieXinbo YuYang LiuHui WangHua LiLixia Chen . Design, synthesis and evaluation of the first DYRK1A degrader for promoting the proliferation of pancreatic β-cells. Chinese Chemical Letters, 2024, 35(11): 109570-. doi: 10.1016/j.cclet.2024.109570

Metrics
  • PDF Downloads(2)
  • Abstract views(668)
  • HTML views(86)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return