Citation: LIN Zhuo-wei, LU Qiang, TANG Hao, LI Hui, DONG Chang-qing, YANG Yong-ping. Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 113-122. shu

Research on the middle-low temperature denitration and anti-poisoning properties of plate V2O5-MoO3/TiO2 SCR catalysts

  • Corresponding author: LU Qiang, qianglu@mail.ustc.edu.cn
  • Received Date: 29 August 2016
    Revised Date: 16 November 2016

    Fund Project: Major State Basic Research Development Program of China 973 projectMajor State Basic Research Development Program of China 2015CB251501Fundamental Research Funds for the Central Universities 2015ZZD02Fundamental Research Funds for the Central Universities 2016YQ05

Figures(10)

  • Considering the technical requirements for middle-low temperature denitration of flue gas, a series of powder and plate type V2O5-MoO3/TiO2 SCR catalysts were prepared using incipient wetness impregnation method with V2O5 as the active component and with MoO3 as the promoter. Experiments were performed to investigate the effects of active component and promoter contents of the catalysts on the activities and the resistance to deactivation by SO2 and H2O. The characterization of the fresh and used catalysts was conducted, and the optimal catalyst was further studied to reveal the denitration performance under different flue gas conditions. The results indicate that the activities of the catalysts are enhanced with the increase of V2O5 loadings. Also, the addition of MoO3 can promote the catalytic activity. The characterization results from XRF, XPS, FT-IR and other analysis suggest that the MoO3 content could affect the V4+/V5+ ratio in the catalyst. The increase in relative MoO3 content is favorable for the formation of non-stoichiometry vanadium species as well as the rise of chemical adsorption oxygen. Therefore, the interactions between molybdenum and vanadium species might be an essential reason for the resistance to the deactivation by SO2 and H2O. The denitrification efficiency of 3V2O5-10MoO3/TiO2 plate catalyst keeps steady around 82% after 30 days test in the presence of SO2 and H2O at temperature of 200℃ and space velocity of 3 500 h-1. The catalyst is identified to have an excellent resistance to the deactivation by SO2 and H2O under middle-low temperatures.
  • 加载中
    1. [1]

      DING Jian, LIU Qing-cai, KONG Ming, LIN Fan, YANG Jian, REN Shan. Influence of arsenic in flue gas on the performance of V2O5-WO3/TiO2 catalyst in selective catalytic reduction of NOx[J]. J Fuel Chem Technol, 2016,44(4):495-499.  

    2. [2]

      JIANG Bo-qiong. The preparation of Mn/TiO2 series low-temperature SCR de NOx catalysts and its reaction mechanism[D]. Hangzhou:Zhejiang University, 2008.

    3. [3]

      TANG Zhi-xiong, CEN Chao-ping, CHEN Xiong-bo, CHEN Ding-sheng, ZENG Wen-hao. Pilot-scale study on SCR technology applied in flue gas de NOx of flat glass furnaces at low & middle temperatures[J]. Chin J Environ Eng, 2015,9(2):817-822.  

    4. [4]

      LI Zhe, WANG Li, YUN Li, WANG Zhen-nan, LI Meng-xia, LI Xin. Activity and antitoxic properties of Cr-MnOx/TiO2-ZrO2 for low-temperature selective catalytic reduction of NO[J]. Chin J Eng, 2015(8):1049-1056.

    5. [5]

      GAO X, JIANG Y, LUO Z, FU Y, ZHONG Y, CHEN K. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3[J]. Catal Commun, 2010,11(5):465-469. doi: 10.1016/j.catcom.2009.11.024

    6. [6]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148

    7. [7]

      PENG Yue. Selective catalytic reduction of NOx on cerium-based catalysts[D]. Changchun:Jilin University, 2012. 

    8. [8]

      LIU Ya-ming, SHU Hang, XU Qi-sheng, ZHANG Yu-hua, YANG Lin-jun. FT-IR study of the catalytic oxidation of SO2 during the process of selective catalytic reduction of NO with NH3 over commercial catalysts[J]. J Fuel Chem Technol, 2015,43(8):1018-1024. doi: 10.1016/S1872-5813(15)30030-X 

    9. [9]

      KOBAYASHI M, KUMA R, MORITA A. Low temperature selective catalytic reduction of NO by NH3 over V2O5 supported on TiO2-SiO2-MoO3[J]. Catal Lett, 2006,112(1/2):37-44.  

    10. [10]

      ZHU Fan, HE Hong, LI Jian, WU Lin-yan, YANG Pin, DENG Zhi-peng. Activities of NO selective catalytic reduction and SO2 oxidation over V2O5-MoO3/TiO2 catalysts[J]. Ind Catal, 2012,20(9):71-76.  

    11. [11]

      PHIL H H, REDDY M P, KUMAR P A, JU L K, HYO J S. SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal B:Environ, 2008,78(3/4):301-308.

    12. [12]

      YAN Dong-jie, YU Ya, HUANG Xue-min, LIU Shu-jun, LIU Ying-hui. Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature[J]. J Fuel Chem Technol, 2016,44(2):232-238. doi: 10.1016/S1872-5813(16)30011-1 

    13. [13]

      SHI Y J, SHU H, ZHANG Y H, FAN F M, ZHANG Y P, YANG L J. Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts[J]. Fuel Process Technol, 2016,150:141-147. doi: 10.1016/j.fuproc.2016.05.016

    14. [14]

      KOBAYASHI M, KUMA R, MASAKI S, SUGISHIMA N. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst:Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl Catal B:Environ, 2005,60(s3/4):173-179.

    15. [15]

      GAN L, GUO F, YU J, XU G. Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors[J]. Catal, 2016,6(2).

    16. [16]

      ARNARSON L, RASMUSSEN S B, FALSIG H, LAURITSEN J V, MOSES P G. Coexistence of square pyramidal structures of oxo Vanadium (+5) and (+4) species over low-coverage VOx/TiO2 (101) and (001) anatase catalysts[J]. J Phys Chem C, 2015,119(41):23445-23452. doi: 10.1021/acs.jpcc.5b06132

    17. [17]

      LÁZARO M J, BOYANO A, HERRERA C, LARRUBIA M A, ALEMANY L J, MOLINER R. Vanadium loaded carbon-based monoliths for the on-board NO reduction:Influence of vanadia and tungsten loadings[J]. Chem Eng J, 2009,155(1/2):68-75.

    18. [18]

      SANG H C, CHO S P, LEE J Y, HONG S H, HONG S C, HONG S I. The influence of non-stoichiometric species of V/TiO2 catalysts on selective catalytic reduction at low temperature[J]. J Mol Catal A:Chem, 2009,304(1):166-173.  

    19. [19]

      YAN W, SHEN Y, ZHU S, JIN Q, LIU Y, LI X. Promotional effect of Molybdenum additives on catalytic performance of CeO2/Al2O3, for selective catalytic reduction of NOx[J]. Catal Lett, 2016,146(7):1221-1230. doi: 10.1007/s10562-016-1739-0

    20. [20]

      KORNELAK P, SU D S, THOMAS C, CAMRA J, WESELUCHA-BIRCZYNSKAET A, TOBA M. Surface species structure and activity in NO decomposition of an anatase-supported V-O-Mo catalyst[J]. Catal Today, 2008,137(2/4):273-277.  

    21. [21]

      AL-KANDARI H, AL-KHARAFI F, AL-AWADI N, EI-DUSOUQUI O M, ALI S A, KATRIB A. The catalytic active sites in partially reduced MoO3 for the hydroisomerization of 1-pentene and n-pentane[J]. Appl Catal A:Gen, 2005,295(1):1-10. doi: 10.1016/j.apcata.2005.07.023

    22. [22]

      LIU J, LI X, ZHAO Q, KE J, XIAO H, LV X. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide:In situ, FTIR analysis for structure-activity correlation[J]. Appl Catal B:Environ, 2016,200:297-308.  

    23. [23]

      FANG J, BI X, SI D, JIANG Z, HUANG W. Spectroscopic studies of interfacial structures of CeO2-TiO2 mixed oxides[J]. Appl Surf Sci, 2007,253(22):8952-8961. doi: 10.1016/j.apsusc.2007.05.013

    24. [24]

      GU T, LIU Y, WENG X, WANG H, WU Z. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3[J]. Catal Commun, 2010,12(4):310-313. doi: 10.1016/j.catcom.2010.10.003

    25. [25]

      KWON D W, PARK K H, HONG S C. Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum[J]. Chem Eng J, 2016,284:315-324. doi: 10.1016/j.cej.2015.08.152

    26. [26]

      AUDI A A, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of sulfates and bisulfates interpreted by Xα and band structure calculations[J]. Surf Interface Anal, 2000,29(4):265-275. doi: 10.1002/(ISSN)1096-9918

    27. [27]

      CAO Zheng, HUANG Yan, PENG Li-li, LI Jian-guang. Selective catalytic reduction of NO with ammonia over V2O5-Sb2O3-TiO2 at low temperature and resistance to H2O and SO2 poisoning[J]. J Fuel Chem Technol, 2012,40(4):456-462.  

    28. [28]

      SHU Hang, ZHANG Yu-hua, FAN Hong-mei, ZHANG Ya-ping, YANG Lin-jun. FT-IR study of the formation and decomposition of ammonium bisulfates on the surface of SCR catalyst for nitrogen removal[J]. J Chem Ind Eng, 2015,66(11):4460-4468.  

    29. [29]

      HUANG Ji-hui, TONG Hua, TONG Zhi-quan, ZHANG Jun-feng, HUANG Yan. Effects of H2O and SO2 on Mn-Fe/MPS catalyst for NO reduction by NH3 at lower temperatures[J]. Chin J Process Eng, 2008,8(3):517-522.  

  • 加载中
    1. [1]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    5. [5]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(5)
  • Abstract views(1773)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return