Citation: CHI Gui-long, SHEN Bo-xiong, ZHU Shao-wen, HE Chuan. Oxidation of elemental mercury over modified SCR catalysts[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 763-768. shu

Oxidation of elemental mercury over modified SCR catalysts

  • Corresponding author: SHEN Bo-xiong, shenboxiong0722@sina.com
  • Received Date: 12 January 2016
    Revised Date: 17 March 2016

Figures(6)

  • The oxidation activity of elemental mercury (Hg0) by transition metal modified SCR catalysts was investigated by using the simulated SCR reactor. The physical and chemical properties of the catalysts were characterized by N2 adsorption-desorption and X-ray diffraction (XRD). The results show that the specific surface area and total pore volume of the catalysts are decreased after the modification by metal oxide. However, the pore structure and distribution after modification have little variation. The weak diffraction peaks of transition metal oxide can be seen from the XRD pattern. Both 8% Ce/SCR and 8% Cu/SCR catalysts show a relatively stable and high Hg0 oxidation efficiency, while the oxidation activity of the 8% Co/SCR catalyst is greatly influenced by temperature. The modified SCR catalysts have an excellent catalytic performance for the Hg0 oxidation under a lower concentration of NH3 and NO. And the Hg0 oxidation efficiency is promoted significantly in the presence of HCl. On the contrary, there is little improvement in the Hg0 oxidation by HCl at the condition of higher concentration of NH3 and NO.
  • 加载中
    1. [1]

      LI P, FENG X B, QIU G L, SHANG L H, LI Z G. Mercury pollution in Asia:A review of the contaminated sites[J]. J Hazrad Mater, 2009,168(2/3):591-601.  

    2. [2]

      SENIOR C L, HELBLE J J, SAROFIM A F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J]. Fuel Process Technol, 2000,65-66(0):263-288.

    3. [3]

      PRESTO A A, GRANITE0 E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol, 2006,40(18):5601-5609. doi: 10.1021/es060504i

    4. [4]

      LIU Ling, DUAN Yu-feng, WANG Yun-jun, WANG Hui, YIN Jian-jun. Experimental study on mercury release behavior and speciation during pyrolysis of two different coals[J]. J Fuel Chem Technol, 2010,38(2):134-139. doi: 10.1016/S1872-5813(10)60026-6 

    5. [5]

      PENG Y, SI W Z, LI X, LUO J M, LI J H, CRITTENDEN J, HAO J M. Comparison of MoO3 and WO3 on arsenic poisoning V2O5/TiO2 catalyst:DRIFTS and DFT study[J]. Appl Catal B:Environ, 2016,181:692-698. doi: 10.1016/j.apcatb.2015.08.030

    6. [6]

      PUDASAINEE D, LEE S J, LEE S H, KIM J H, JANG H N, CHO S J, SEO Y C. Effect of selective catalytic reactor on oxidation and enhanced removal of mercury in coal-fired power plants[J]. Fuel, 2010,89(4):804-809. doi: 10.1016/j.fuel.2009.06.022

    7. [7]

      CAO Y, GAO Z Y, ZHU J S, WANG Q H, HUANG Y J, CHIU C C, PARKER B, CHU P, PAN W P. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal[J]. Environ Sci Technol, 2008,42(1):256-261. doi: 10.1021/es071281e

    8. [8]

      CAO Y, C B, WU J, CUI H, SMITH J, CHEN C K, CH UP, PAN W P. Study of mercury oxidation by a selective catalytic reduction catalyst in a pilot-scale slipstream reactor at a utility boiler burning bituminous coal[J]. Energy Fuels, 2007,21:145-156. doi: 10.1021/ef0602426

    9. [9]

      YANG H M, PAN W P. Transformation of mercury speciation through the SCR system in power plants[J]. J Environ Sci, 2007,19(2):181-184. doi: 10.1016/S1001-0742(07)60029-1

    10. [10]

      SENIOR C L. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants[J]. J Air Waste Manage, 2006,56(1):23-31. doi: 10.1080/10473289.2006.10464437

    11. [11]

      KAMATA H, UENO S I, NAITO T, YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2008,47(21):8136-8141. doi: 10.1021/ie800363g

    12. [12]

      YANG J, YANG Q, SUN J, LIU Q C, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:78-82. doi: 10.1016/j.catcom.2014.09.049

    13. [13]

      LI Jian-rong, HE Chi, SHANG Xue-song, CHEN Jin-sheng, YU Xiao-wei, YAO Yuan-jun. Oxidation efficiency of elemental mercury in flue gas by SCR De-NOx catalysts[J]. J Fuel Chem Technol, 2012,40(2):241-246. doi: 10.1016/S1872-5813(12)60012-7 

    14. [14]

      LI H L, LI Y, WU C Y, ZHANG J Y. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chem Eng J, 2011,169(1/3):186-193.

    15. [15]

      LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012,111-112:381-388. doi: 10.1016/j.apcatb.2011.10.021

    16. [16]

      XU W X, WANG H R, ZHOU X, ZHU T Y. CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation[J]. Chem Eng J, 2014,243:380-385. doi: 10.1016/j.cej.2013.12.014

    17. [17]

      LI H L, WU S K, WU C Y, WANG J, LI L Q, SHIH K. SCR atmosphere induced reduction of oxidized mercury over CuO/CeO2-TiO2 catalyst[J]. Environ Sci Technol, 2015,49(12):7373-7379. doi: 10.1021/acs.est.5b01104

    18. [18]

      DRANGA B A, KOESER H. Increased co-oxidation activity for mercury under hot and cold site coal power plant conditions-Preparation and evaluation of Au/TiO2-coated SCR-DeNOx catalysts[J]. Appl Catal B:Environ, 2015,166-167:302-312. doi: 10.1016/j.apcatb.2014.11.018

    19. [19]

      WANG P Y, SU S, XIANG J, CAO F, SUN L S, HU S, LEI S Y. Catalytic oxidation of Hg0 by CuO-MnO2-Fe2O3/γ-Al2O3 catalyst[J]. Chem Eng J, 2013,225(0):68-75.

    20. [20]

      WEN X Y, LI C T, FAN X P, GAO H L, ZHANG W, CHEN L, ZENG G M, ZHAO Y P. Experimental study of gaseous elemental mercury removal with CeO2/γ-Al2O3[J]. Energy Fuels, 2011,25(7):2939-2944. doi: 10.1021/ef200144j

    21. [21]

      XIE Y N, LI C T, ZHAO L K, ZHANG J, ZENG G M, ZHANG X N, ZHANG W, TAO S S. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke[J]. Appl Surf Sci, 2015,333:59-67. doi: 10.1016/j.apsusc.2015.01.234

    22. [22]

      WANG J W, YANG J L, LIU Z Y. Gas-phase elemental mercury capture by a V2O5/AC catalyst[J]. Fuel Process Technol, 2010,91(6):676-680. doi: 10.1016/j.fuproc.2010.01.017

    23. [23]

      ZHAO Li, HE Qing-song, LI Lin, LU Qiang, DONG Chang-qing, YANG Yong-ping. Research on the catalytic oxidation of Hg0 by modified SCR catalysts[J]. J Fuel Chem Technol, 2015,43(5):628-634. doi: 10.1016/S1872-5813(15)30018-9 

    24. [24]

      LIU Y, WANG Y J, WANG H Q, WU Z B. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catal Commun, 2011,12(14):1291-1294. doi: 10.1016/j.catcom.2011.04.017

    25. [25]

      HONG H J, HAM S W, KIM M H, LEE S M, LEE J B. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions[J]. Korean J Chem Eng, 2010,27(4):1117-1122. doi: 10.1007/s11814-010-0175-x

    26. [26]

      LEE W, BAE G N. Removal of elemental mercury (Hg (0)) by nanosized V2O5/TiO2 catalysts[J]. Environ Sci Technol, 2009,43(5):1522-1527. doi: 10.1021/es802456y

    27. [27]

      GAO X, JIANG Y, ZHONG Y, LUO Z Y, CEN K F. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazrad Mater, 2010,174:734-739. doi: 10.1016/j.jhazmat.2009.09.112

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    17. [17]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

Metrics
  • PDF Downloads(0)
  • Abstract views(2025)
  • HTML views(280)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return