Citation: Aboul-Fotouh Sameh M. K., Ali Laila I., Naghmash Mona A., Aboul-Gheit Noha A. K.. Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 581-588. shu

Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication

  • Corresponding author: Aboul-Fotouh Sameh M. K., samehaboulfotouh@yahoo.com
  • Received Date: 21 December 2016
    Revised Date: 27 March 2017

Figures(12)

  • A series of as-synthesized HZSM-5 zeolites with different Si/Al ratios (25, 90, 120, 240 and 400) were post-treated by ultrasonication for an optimum time of 60 min. The morphology, acidity and textural properties of HZSM-5 were characterized with XRD, SEM, N2 adsorption and NH3-TPD techniques. The catalytic performance was evaluated by dehydration of methanol to dimethyl ether (DME), which is a promising gaseous automotive fuel in future. It was found that the Si/Al ratio of HZSM-5 had considerable impacts on its catalytic performance for dehydration of methanol to DME. Its activity increased with decreasing Si/Al ratio from 400 to 25. Ultrasonication of HZSM-5 could significantly improve its catalytic performance.
  • 加载中
    1. [1]

      SHIKADA T, FUJIMOTO K, MIYAUCHI M, TOMINAGA H. Vapor phase carbonylation of dimethyl ether and methyl acetate with nickel-active carbon catalysts[J]. Appl Catal, 1983,7(3):361-368. doi: 10.1016/0166-9834(83)80035-9

    2. [2]

      QI G X, ZHENG X M, FEI J H, HOU Z Y. A novel catalyst for DME synthesis from CO hydrogenation:1.Activity, structure and surface properties[J]. J Mol Catal A:Chem, 2001,176(1/2):195-203.  

    3. [3]

      SUN K, LU W. Direct synthesis of DME over bifunctional catalyst:Surface properties and catalytic performance[J]. Appl Catal A:Gen, 2003,252(12):243-249.  

    4. [4]

      XU M, LUNSFORD J H, GOODMAN D W, BHATTACHARYYA A. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl Catal A:Gen, 1997,149(2):289-301. doi: 10.1016/S0926-860X(96)00275-X

    5. [5]

      KIM S D, BAEK S C, LEE Y J, JUN K W, KIM M J, YOO I S. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl Catal A:Gen, 2006,309(1):139-143. doi: 10.1016/j.apcata.2006.05.008

    6. [6]

      FEI J, HOU Z, ZHU B, LOU H, ZHENG X. Synthesis of dimethyl ether (DME) on modified HY zeolite and modified HY zeolite-supported Cu-Mn-Zn catalysts[J]. Appl Catal A:Gen, 2006,304:49-54. doi: 10.1016/j.apcata.2006.02.019

    7. [7]

      CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chem Rev, 1995,95(3):559-614. doi: 10.1021/cr00035a006

    8. [8]

      VISHWANATHAN V, JUN K W, KIM J W, ROH H S. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified HZSM-5 catalysts[J]. Appl Catal A:Gen, 2004,276(1/2):251-255.  

    9. [9]

      YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Catalytic dehydration of methanol to dimethyl ether (DME) over solid-acid catalysts[J]. Catal Commun, 2005,6(2):147-152. doi: 10.1016/j.catcom.2004.11.012

    10. [10]

      YARIPOUR F, BAGHAEI F, SCHMIDT I, PERREGAARD J. Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania Catalysts[J]. Catal Commun, 2005,6(8):542-549. doi: 10.1016/j.catcom.2005.05.003

    11. [11]

      WANG A W, WEIGEL S, MURARO G. Molecular sieves as catalyst for methanol dehydration in the LPDMETM process[R]. Air Products and Chemicals Inc, 2002, DE-FC22-95PC93052.

    12. [12]

      HU J L, WANG Y, CAO C S, ELLIOTT D C, STEVENS D J, WHITE J. Conversion of biomass syngas to DME using a microchannel reactor[J]. Ind Eng Chem Res, 2005,44(6):1722-1727. doi: 10.1021/ie0492707

    13. [13]

      FU Y, HONG T, CHEN J, AUROUX A, SHEN J. Surface acidity and the dehydration of methanol to dimethyl ether[J]. Thermochim Acta, 2005,434(1/2):22-26.  

    14. [14]

      MIRTH G, LERCHER J A. Surface chemistry of methanol on HZSM-5[J]. Stud Surf Sci Catal, 1991,61:437-443. doi: 10.1016/S0167-2991(08)60110-X

    15. [15]

      LERCHER J A, MIRTH G, STOCKENHUBER M, NARBESHUBER T, KOGELBAUER A. Elementary steps of acid-base catalyzed reactions in molecular sieves:Elementary steps of acid-base catalyzed reactions in molecular sieves[J]. Stud Surf Sci Catal, 1994,90:147-156. doi: 10.1016/S0167-2991(08)61813-3

    16. [16]

      KUBELKOVA L, NOVAKOVA J, JIRU P. Reaction of small amounts of methanol on HZSM-5, HY and modified Y zeolites[J]. Stud Surf Sci Catal, 1984,18:217-224. doi: 10.1016/S0167-2991(09)61157-5

    17. [17]

      BOSACEK V. Formation of surface-bonded methoxy groups in the sorption of methanol and methyl iodide on zeolites studied by carbon-13 MAS NMR spectroscopy[J]. J Phys Chem, 1993,97(41):10732-10737. doi: 10.1021/j100143a035

    18. [18]

      SCHMACHTL M, KIM T J, GRILL W, HERMANN R, SCHARF O, SCHWIEGER W, SCHERTLEN R, STENZEL C. Ultrasonic monitoring of zeolit synthesis in real time[J]. Ultrasonics, 2000,38(1/8):809-812.  

    19. [19]

      SIMONA B, ANTONELLA G, VITTORIO R. Preparation of highly dispersed CuO catalysts on oxide supports for deNOx reactions[J]. Ultrasonics Sonochem, 2003,10(2):61-64. doi: 10.1016/S1350-4177(02)00150-5

    20. [20]

      BONRATH W. Ultrasound supported catalysis[J]. Ultrasonic Sonochem, 2005,12(1/2):103-106.  

    21. [21]

      KLIMA J. Application of ultrasound in electrochemistry. An over view of mechanisms and design of experimental arrangement[J]. Ultrasonics, 2011,51(2):202-209. doi: 10.1016/j.ultras.2010.08.004

    22. [22]

      CASTRO M D, CAPOTE F P. Ultrasound assistance to analytical heterogeneous liquid-liquid systems[J]. Techniques Anal Chem, 2007,26:193-226.

    23. [23]

      PARK J, KIM B C, PARK A S, PARK H C. Conventional versus ultrasonic synthesis of zeolite 4A from kaolinite[J]. J Mater Sci Lett, 2001,20(36):531-533.  

    24. [24]

      ANDAC O, TATHER M, SIRKECIOGLU A, ECE I A. Erdem-Senatalar, Effects of ultrasound on zeolite A synthesis[J]. Microporous Mesoporous Mater, 2005,79(1/3):225-233.  

    25. [25]

      ABOUL-GHEIT A K, ABOUL-FOTOUH S M, LILA I A, NAGHMASH M A. Ultrasonication of H-MOR zeolite catalysts for dimethylether (DME) production as a clean fuel[J]. J Pet Technol Altern Fuels, 2014,5(2):13-25. doi: 10.5897/JPTAF

    26. [26]

      ABOUL-GHEIT A K, ABDEL-HAMID S M, GHONEIM S A, AL-OWAIS A A. Hydroconversion of n-hexane on Pt/MOR denit catalysts[J]. Erdol Erdgas Kohle, 1999,115:90-94.  

    27. [27]

      ABOUL-FOTOUH S M. Cyclohexene reactivity using catalysts containing Pt, Re and PtRe supported on Na-and H-mordenite[J]. J Chin Chem Soc, 2003,50:1151-1158. doi: 10.1002/jccs.v50.6

    28. [28]

      GOPAL S, YOO K, SMIRNIOTIS P G. Synthesis of Al-rich ZSM-12 using TEAOH as template[J]. Microporous Mesoporous Mater, 2001,49(1/3):149-156.  

    29. [29]

      XU Q, LAN P, HUANG K, YAN Y. Effect of different ratios of Si-Al of zeolite HZSM-5 on the activity of bifunctional catalysts upon dimethylether synthesis[J]. Pet Sci Technol, 2011,29(10):1080-1092. doi: 10.1080/10916460903502472

    30. [30]

      VISWANADHAM N, KAMBLE R, SINGH M, KUMAR M, DHAR G M. Catalytic properties of nano-sized HZSM-5 aggregates[J]. Catal Today, 2009,141(1/2):182-186.

    31. [31]

      ABOUL-FOTOUH S M. Effect of ultrasonic irradiation and/or halogenations on the catalytic performance of γ-Al2O3for methanol dehydration to dimethyl ether[J]. J Fuel Chem Technol, 2013,41(9):1077-1084. doi: 10.1016/S1872-5813(13)60045-6

    32. [32]

      ABOUL-FOTOUH S M, ABOUL-GHEIT N A K, NAGHMASH M A. Dimethylether production on zeolite catalysts activated by Cl-, F- and/or ultrasonication[J]. J Fuel Chem Technol, 2016,44(4):428-436. doi: 10.1016/S1872-5813(16)30022-6

    33. [33]

      XU M T, GOODMAN D W, BHATTACHARYYA A. Catalytic dehydration of methanol to dimethyl ether (DME) over Pd/Cab-O-Sil catalysts[J]. Appl Catal A:Gen, 1997,149(2):303-309. doi: 10.1016/S0926-860X(96)00276-1

  • 加载中
    1. [1]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    2. [2]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    3. [3]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    4. [4]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    5. [5]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    6. [6]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    7. [7]

      Heng GaoJiwei ZhangPeng ZhanXinyong Liu . AL5E: A breakthrough in broad-spectrum coronavirus inactivation through structure-guided design. Chinese Chemical Letters, 2025, 36(7): 111221-. doi: 10.1016/j.cclet.2025.111221

    8. [8]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    9. [9]

      Fengjun DengTingyu ZhaoXiaochen ZhangKaiyong FengZe LiuYoulin XiangYingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897

    10. [10]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    11. [11]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    12. [12]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    13. [13]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    14. [14]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    15. [15]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    16. [16]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    17. [17]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    18. [18]

      Xiangkang JiangZhixing WangHong DongXiang ZhangJin HuManman ChuYanshuai HongLei XuWenjie PengXiqian YuJiexi Wang . An in-depth understanding of Al doping homogeneity affecting the performance of LiCoO2 at cut-off voltage over 4.6 V. Chinese Chemical Letters, 2024, 35(12): 109553-. doi: 10.1016/j.cclet.2024.109553

    19. [19]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    20. [20]

      . . University Chemistry, 2024, 39(5): 0-0.

Metrics
  • PDF Downloads(2)
  • Abstract views(457)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return