Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study
- Corresponding author: LUO Xu-dong, luoxudong2019@sina.com
Citation:
QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(4): 432-439.
KIEKEN L D, NEUROCK M, MEID H. Screening by kinetic monte carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen[J]. J Phys Chem B, 2005,109(6):2234-2244.
GANDHI H S, GRAHAM G W, MCCABE R W. Automotive exhaust catalysis[J]. J Catal, 2003,216(1/2):433-442.
CHENG X, SHI Z, GLASS N, ZHANG L, ZHANG J J, SONG D T, LIU Z S, WANG H J, SHEN J. A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation[J]. J Power Sources, 2007,165(2):739-756. doi: 10.1016/j.jpowsour.2006.12.012
WANG S, ANG H M, TADE M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environ Int, 2007,33(5):694-705. doi: 10.1016/j.envint.2007.02.011
KAGEYAMA S, SUGANO Y, HAMAGUCHI Y, KUGAI J, OHKUBO Y, SEINO S, NAKAGAWA T, ICHIKAWA S, YAMAMOTO T A. Pt/TiO2 composite nanoparticles synthesized by electron beam irradiation for preferential CO oxidation[J]. Mater Res Bull, 2013,48(4):1347-1351. doi: 10.1016/j.materresbull.2012.11.028
ATES A, PFEIFER P, GOERKE O. Thin-Film catalytic coating of a microreactor for preferential CO oxidation over Pt catalysts[J]. Chem Ing Tech, 2013,85(5):664-672. doi: 10.1002/cite.201200166
GARCIA-DIEGUEZ M, IGLESIA E. Structure sensitivity via decoration of low-coordination exposed metal atoms:CO oxidation catalysis on Pt clusters[J]. J Catal, 2013,301:198-209. doi: 10.1016/j.jcat.2013.02.014
LI Y Z, YU Y, WANG J G, SONG J, LI Q, DONG M D, LIU C J. CO oxidation over graphene supported palladium catalyst[J]. Appl Catal B:Environ, 2012,125:189-196. doi: 10.1016/j.apcatb.2012.05.023
LIU L Q, ZHOU F, WANG L G, QI X J, SHI F, DENG Y Q. Low-temperature CO oxidation over supported Pt, Pd catalysts:Particular role of FeOx support for oxygen supply during reactions[J]. J Catal, 2010,274(1):1-10.
TODOROKI N, OSANO H, MAEYAMA T, YOSHIDA H, WADAYAMA T. Infrared reflection absorption spectral study for CO adsorption on Pd/Pt(111) bimetallic surfaces[J]. Appl Surf Sci, 2009,256(4):943-947. doi: 10.1016/j.apsusc.2009.05.070
JAATINEN S, SALO P, ALATALO M, KULMALA V, KOKKO K. Structure and reactivity of Pd doped Ag surfaces[J]. Surf Sci, 2003,529(3):403-409. doi: 10.1016/S0039-6028(03)00304-2
DESAI S K, NEUROCK M. First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy[J]. Phys Rev B, 2003,68(7)075420. doi: 10.1103/PhysRevB.68.075420
DESAI S K, NEUROCK M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces[J]. Electrochim Acta, 2003,48(25/26):3759-3773.
SUO Y G, ZHUANG L, LU J T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction[J]. Angew Chem Int Ed, 2007,46(16):2862-2864. doi: 10.1002/anie.200604332
YAO Y F Y. The oxidation of CO and hydrocarbons over noble-metal catalysts[J]. J Catal, 1984,87(11):152-162.
ERTL G. Oscillatory kinetics and spatiotemporal self-organization in reactions at solid-surfaces[J]. Science, 1991,254(5039):1750-1755. doi: 10.1126/science.254.5039.1750
LIAN X, GUO W L, LIU F L, YANG Y, XIAO P, ZHANG Y H, TIAN W Q. DFT studies on Pt3M(M=Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation[J]. Comput Mater Sci, 2015,96:237-245. doi: 10.1016/j.commatsci.2014.09.025
KRAUSA M, VIELSTICH W. Potential oscillations during methanol oxidation at Pt-electrodes.1. Experimental conditions[J]. J Electroanal Chem, 1995,399(1/2):7-12.
TONG Y Y, KIM H S, BABU P K, WASZCZUK P, WIECKOWSKI A, OLDFIELD E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst[J]. J Am Chem Soc, 2002,124(3):468-473. doi: 10.1021/ja011729q
DAVIES J C, BONDE J, LOGADOTTIR A, NORSKOV J K, CHORKENDORFF I. The ligand effect:CO desorption from Pt/Ru catalysts[J]. Fuel Cell, 2005,5(4):429-435.
WANG F G, XU Y, ZHAO K F, HE D N. Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature[J]. Nano-Micro Lett, 2014,6(3):233-241. doi: 10.1007/BF03353787
PARK R L, SCHREINE D. Oxidation of carbon-monoxide on palladium[J]. J Vac Sci Technol, 1974,11(1):248-248. doi: 10.1116/1.1318581
ENGEL T, ERTL G. Surface residence times and reaction-mechanism in catalytic-oxidation of CO on Pd(111)[J]. Chem Phys Lett, 1978,54(1):95-98.
MURATA K, ELEEDA E, OHYAMA J, YAMAMOTO Y, ARAI S, SATSUMA A. Identification of active sites in CO oxidation over a Pd/Al2O3 catalyst[J]. Phys Chem Chem Phys, 2019,21(33):18128-18137. doi: 10.1039/C9CP03943K
LI S Y, LIU G, LIAN H L, JIA M J, ZHAO G M, JIANG D Z, ZHANG W X. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun, 2008,9(6):1045-1049.
TELKAR M M, RODE C V, CHAUDHARI R V, JOSHI S S, NALAWADE A M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1, 4-diol and styrene oxide[J]. Appl Catal A:Gen, 2004,273(1/2):11-19.
HUANG H H, NI X P, LOY G L, CHEW C H, TAN K L, LOH F C, DENG J F, XU G Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone)[J]. Langmuir, 1996,12(4):909-912.
SARKAR A, KAPOOR S, MUKHERJEE T. Preparation, characterization, and surface modification of silver nanoparticles in formamide[J]. J Phys Chem B, 2005,109(16):7698-7704. doi: 10.1021/jp044201r
GUNAY M E, YILDIRIM R. Modeling preferential CO oxidation over promoted Au/Al2O3 catalysts using decision trees and modular neural networks[J]. Chem Eng Res Des, 2013,91(5):874-882. doi: 10.1016/j.cherd.2012.08.017
KUGAI J, MORIYA T, SEINO S, NAKAGAWA T, OHKUBO Y, NITANI H, YAMAMOTO T A. Comparison of structure and catalytic performance of Pt-Co and Pt-Cu bimetallic catalysts supported on Al2O3 and CeO2 synthesized by electron beam irradiation method for preferential CO oxidation[J]. Int J Hydrogen Energy, 2013,38(11):4456-4465. doi: 10.1016/j.ijhydene.2013.01.159
GILROY K D, RUDISKIY A, PENG H C, QIN D, XIA Y N. Bimetallic nanocrystals:Syntheses, properties, and applications[J]. Chem Rev, 2016,116(18):10414-10472. doi: 10.1021/acs.chemrev.6b00211
HUTCHINGS G J, KIELY C J. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition[J]. Acc Chem Res, 2013,46(8):1759-1772. doi: 10.1021/ar300356m
JACQUES S D M, MICHIEL M D, BEALE A M, SOCHI T, O'BRIEN M G, ESPINOSA-ALONSO L, WECKHUYSEN B M, BARNES P. Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution[J]. Angew Chem Int Ed, 2011,50(43):10148-10152. doi: 10.1002/anie.201104604
BANGER K K, YAMASHITA Y, MORI K, PETERSON R L, LEEDHAM T, RICKARD J, SIRRINGHAUS H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip' process[J]. Nat Mater, 2011,10(1):45-50.
UCHIYAMA T, YOSHIDA H, KUWAUCHI Y, ICHIKAWA S, SHIMADA S, HARUTA M, TAKEDA S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation[J]. Angew Chem Int Ed, 2011,50(43):10157-10160. doi: 10.1002/anie.201102487
ZHANG J, JIN H, SULLIVAN M B, CHIANG F, LIM H, WU P. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations[J]. Phys Chem Chem Phys, 2009,11(9):1441-1446. doi: 10.1039/b814647k
HUBER B, MOSELER M. Predicting experimental signatures for the oxidation of magnesia supported palladium clusters by density functional theory[J]. Eur Phys J D, 2007,45(3):485-489. doi: 10.1140/epjd/e2007-00178-5
KALITA B, DEKA R C. DFT study of CO adsorption on neutral and charged Pd-n(n=1-7) clusters[J]. Eur Phys J D, 2009,53:51-58. doi: 10.1140/epjd/e2009-00044-6
KALITA B, DEKA R C. Reaction intermediates of CO oxidation on gas phase Pd-4 clusters:A density functional study[J]. J Am Chem Soc, 2009,131(37):13252-13254. doi: 10.1021/ja904119b
CHEN H, WU Y, QI S, CHEN Y, YANG M. Deoxygenation of octanoic acid catalyzed by hollow spherical Ni/ZrO2[J]. Appl Catal A:Gen, 2017,529:79-90. doi: 10.1016/j.apcata.2016.10.014
WANG B, SONG L, ZHANG R. The dehydrogenation of CH4 on Rh(111), Rh(110) and Rh(100) surfaces:A density functional theory study[J]. Appl Surf Sci, 2012,258(8):3714-3722. doi: 10.1016/j.apsusc.2011.12.012
ZHANG R, SONG L, WANG Y. Insight into the adsorption and dissociation of CH4 on Pt(h k l) surfaces:A theoretical study[J]. Appl Surf Sci, 2012,258(18):7154-7160. doi: 10.1016/j.apsusc.2012.04.020
WANG D, LI Y. Bimetallic nanocrystals:Liquid-phase synthesis and catalytic applications[J]. Adv Mater, 2011,23(9):1044-1060. doi: 10.1002/adma.201003695
Qian Huang , Zhaowei Li , Jianing Zhao , Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Lele Feng , Xueying Bai , Jifeng Pang , Hongchen Cao , Xiaoyan Liu , Wenhao Luo , Xiaofeng Yang , Pengfei Wu , Mingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100
Xiaoyu Zhao , Kai Gao , Sen Xue , Wei Ran , Rui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
Yanxin Jiang , Kwai Wun Cheng , Zhiping Yang , Jun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231
Junhua Li , Tianci Shen , Yahui Zhuang , Yu Fu , Yian Shi . Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates. Chinese Chemical Letters, 2025, 36(7): 110599-. doi: 10.1016/j.cclet.2024.110599
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
Rui Li , Jiayu Zhang , Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
(a): Pd slab model; (b): Pd38 cluster model
(a): O2 dissociation; (b): CO oxidation-1; (c): CO oxidation-2 C, O, H and Pd atoms are shown as grey, red, white and blue balls, respectively
(a): O2 dissociation; (b): CO oxidation C, O, H and Pd atoms are shown as grey, red, white and blue balls, respectively