Citation: QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 432-439. shu

Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study

  • Corresponding author: LUO Xu-dong, luoxudong2019@sina.com
  • Received Date: 12 November 2019
    Revised Date: 4 March 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (51772139)National Natural Science Foundation of China 51772139

Figures(6)

  • The catalytic oxidation of CO was comparatively investigated on the Pd slab and Pd38 cluster models by density functional theory (DFT) calculation, in order to reveal the mechanism of CO oxidation over Pd catalysts. The results show that the rate-determining step of CO oxidation on the Pd38 cluster is the dissociation of O2, with the energy barrier of 0.65 eV, whereas the oxidation of CO turns to be the rate-determining step on Pd slab, with the energy barrier of 0.87 eV. Obviously, the oxidation of CO on the Pd38 cluster is much easier than that on the Pd slab, suggesting that the activity of Pd catalysts is related to the dispersion of active Pd species; the Pd catalyst with higher Pd dispersion also exhibits higher activity in CO oxidation.
  • 加载中
    1. [1]

      KIEKEN L D, NEUROCK M, MEID H. Screening by kinetic monte carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen[J]. J Phys Chem B, 2005,109(6):2234-2244.  

    2. [2]

      GANDHI H S, GRAHAM G W, MCCABE R W. Automotive exhaust catalysis[J]. J Catal, 2003,216(1/2):433-442.  

    3. [3]

      CHENG X, SHI Z, GLASS N, ZHANG L, ZHANG J J, SONG D T, LIU Z S, WANG H J, SHEN J. A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation[J]. J Power Sources, 2007,165(2):739-756. doi: 10.1016/j.jpowsour.2006.12.012

    4. [4]

      WANG S, ANG H M, TADE M O. Volatile organic compounds in indoor environment and photocatalytic oxidation:State of the art[J]. Environ Int, 2007,33(5):694-705. doi: 10.1016/j.envint.2007.02.011

    5. [5]

      KAGEYAMA S, SUGANO Y, HAMAGUCHI Y, KUGAI J, OHKUBO Y, SEINO S, NAKAGAWA T, ICHIKAWA S, YAMAMOTO T A. Pt/TiO2 composite nanoparticles synthesized by electron beam irradiation for preferential CO oxidation[J]. Mater Res Bull, 2013,48(4):1347-1351. doi: 10.1016/j.materresbull.2012.11.028

    6. [6]

      ATES A, PFEIFER P, GOERKE O. Thin-Film catalytic coating of a microreactor for preferential CO oxidation over Pt catalysts[J]. Chem Ing Tech, 2013,85(5):664-672. doi: 10.1002/cite.201200166

    7. [7]

      GARCIA-DIEGUEZ M, IGLESIA E. Structure sensitivity via decoration of low-coordination exposed metal atoms:CO oxidation catalysis on Pt clusters[J]. J Catal, 2013,301:198-209. doi: 10.1016/j.jcat.2013.02.014

    8. [8]

      LI Y Z, YU Y, WANG J G, SONG J, LI Q, DONG M D, LIU C J. CO oxidation over graphene supported palladium catalyst[J]. Appl Catal B:Environ, 2012,125:189-196. doi: 10.1016/j.apcatb.2012.05.023

    9. [9]

      LIU L Q, ZHOU F, WANG L G, QI X J, SHI F, DENG Y Q. Low-temperature CO oxidation over supported Pt, Pd catalysts:Particular role of FeOx support for oxygen supply during reactions[J]. J Catal, 2010,274(1):1-10.

    10. [10]

      TODOROKI N, OSANO H, MAEYAMA T, YOSHIDA H, WADAYAMA T. Infrared reflection absorption spectral study for CO adsorption on Pd/Pt(111) bimetallic surfaces[J]. Appl Surf Sci, 2009,256(4):943-947. doi: 10.1016/j.apsusc.2009.05.070

    11. [11]

      JAATINEN S, SALO P, ALATALO M, KULMALA V, KOKKO K. Structure and reactivity of Pd doped Ag surfaces[J]. Surf Sci, 2003,529(3):403-409. doi: 10.1016/S0039-6028(03)00304-2

    12. [12]

      DESAI S K, NEUROCK M. First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy[J]. Phys Rev B, 2003,68(7)075420. doi: 10.1103/PhysRevB.68.075420

    13. [13]

      DESAI S K, NEUROCK M. A first principles analysis of CO oxidation over Pt and Pt66.7%Ru33.3% (111) surfaces[J]. Electrochim Acta, 2003,48(25/26):3759-3773.  

    14. [14]

      SUO Y G, ZHUANG L, LU J T. First-principles considerations in the design of Pd-alloy catalysts for oxygen reduction[J]. Angew Chem Int Ed, 2007,46(16):2862-2864. doi: 10.1002/anie.200604332

    15. [15]

      YAO Y F Y. The oxidation of CO and hydrocarbons over noble-metal catalysts[J]. J Catal, 1984,87(11):152-162.  

    16. [16]

      ERTL G. Oscillatory kinetics and spatiotemporal self-organization in reactions at solid-surfaces[J]. Science, 1991,254(5039):1750-1755. doi: 10.1126/science.254.5039.1750

    17. [17]

      LIAN X, GUO W L, LIU F L, YANG Y, XIAO P, ZHANG Y H, TIAN W Q. DFT studies on Pt3M(M=Pt, Ni, Mo, Ru, Pd, Rh) clusters for CO oxidation[J]. Comput Mater Sci, 2015,96:237-245. doi: 10.1016/j.commatsci.2014.09.025

    18. [18]

      KRAUSA M, VIELSTICH W. Potential oscillations during methanol oxidation at Pt-electrodes.1. Experimental conditions[J]. J Electroanal Chem, 1995,399(1/2):7-12.  

    19. [19]

      TONG Y Y, KIM H S, BABU P K, WASZCZUK P, WIECKOWSKI A, OLDFIELD E. An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst[J]. J Am Chem Soc, 2002,124(3):468-473. doi: 10.1021/ja011729q

    20. [20]

      DAVIES J C, BONDE J, LOGADOTTIR A, NORSKOV J K, CHORKENDORFF I. The ligand effect:CO desorption from Pt/Ru catalysts[J]. Fuel Cell, 2005,5(4):429-435.  

    21. [21]

      WANG F G, XU Y, ZHAO K F, HE D N. Preparation of palladium supported on ferric oxide nano-catalysts for carbon monoxide oxidation in low temperature[J]. Nano-Micro Lett, 2014,6(3):233-241. doi: 10.1007/BF03353787

    22. [22]

      PARK R L, SCHREINE D. Oxidation of carbon-monoxide on palladium[J]. J Vac Sci Technol, 1974,11(1):248-248. doi: 10.1116/1.1318581

    23. [23]

      ENGEL T, ERTL G. Surface residence times and reaction-mechanism in catalytic-oxidation of CO on Pd(111)[J]. Chem Phys Lett, 1978,54(1):95-98.  

    24. [24]

      MURATA K, ELEEDA E, OHYAMA J, YAMAMOTO Y, ARAI S, SATSUMA A. Identification of active sites in CO oxidation over a Pd/Al2O3 catalyst[J]. Phys Chem Chem Phys, 2019,21(33):18128-18137. doi: 10.1039/C9CP03943K

    25. [25]

      LI S Y, LIU G, LIAN H L, JIA M J, ZHAO G M, JIANG D Z, ZHANG W X. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method[J]. Catal Commun, 2008,9(6):1045-1049.  

    26. [26]

      TELKAR M M, RODE C V, CHAUDHARI R V, JOSHI S S, NALAWADE A M. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1, 4-diol and styrene oxide[J]. Appl Catal A:Gen, 2004,273(1/2):11-19.  

    27. [27]

      HUANG H H, NI X P, LOY G L, CHEW C H, TAN K L, LOH F C, DENG J F, XU G Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone)[J]. Langmuir, 1996,12(4):909-912.  

    28. [28]

      SARKAR A, KAPOOR S, MUKHERJEE T. Preparation, characterization, and surface modification of silver nanoparticles in formamide[J]. J Phys Chem B, 2005,109(16):7698-7704. doi: 10.1021/jp044201r

    29. [29]

      GUNAY M E, YILDIRIM R. Modeling preferential CO oxidation over promoted Au/Al2O3 catalysts using decision trees and modular neural networks[J]. Chem Eng Res Des, 2013,91(5):874-882. doi: 10.1016/j.cherd.2012.08.017

    30. [30]

      KUGAI J, MORIYA T, SEINO S, NAKAGAWA T, OHKUBO Y, NITANI H, YAMAMOTO T A. Comparison of structure and catalytic performance of Pt-Co and Pt-Cu bimetallic catalysts supported on Al2O3 and CeO2 synthesized by electron beam irradiation method for preferential CO oxidation[J]. Int J Hydrogen Energy, 2013,38(11):4456-4465. doi: 10.1016/j.ijhydene.2013.01.159

    31. [31]

      GILROY K D, RUDISKIY A, PENG H C, QIN D, XIA Y N. Bimetallic nanocrystals:Syntheses, properties, and applications[J]. Chem Rev, 2016,116(18):10414-10472. doi: 10.1021/acs.chemrev.6b00211

    32. [32]

      HUTCHINGS G J, KIELY C J. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition[J]. Acc Chem Res, 2013,46(8):1759-1772. doi: 10.1021/ar300356m

    33. [33]

      JACQUES S D M, MICHIEL M D, BEALE A M, SOCHI T, O'BRIEN M G, ESPINOSA-ALONSO L, WECKHUYSEN B M, BARNES P. Dynamic X-ray diffraction computed tomography reveals real-time insight into catalyst active phase evolution[J]. Angew Chem Int Ed, 2011,50(43):10148-10152. doi: 10.1002/anie.201104604

    34. [34]

      BANGER K K, YAMASHITA Y, MORI K, PETERSON R L, LEEDHAM T, RICKARD J, SIRRINGHAUS H. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a 'sol-gel on chip' process[J]. Nat Mater, 2011,10(1):45-50.  

    35. [35]

      UCHIYAMA T, YOSHIDA H, KUWAUCHI Y, ICHIKAWA S, SHIMADA S, HARUTA M, TAKEDA S. Systematic morphology changes of gold nanoparticles supported on CeO2 during CO oxidation[J]. Angew Chem Int Ed, 2011,50(43):10157-10160. doi: 10.1002/anie.201102487

    36. [36]

      ZHANG J, JIN H, SULLIVAN M B, CHIANG F, LIM H, WU P. Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations[J]. Phys Chem Chem Phys, 2009,11(9):1441-1446. doi: 10.1039/b814647k

    37. [37]

      HUBER B, MOSELER M. Predicting experimental signatures for the oxidation of magnesia supported palladium clusters by density functional theory[J]. Eur Phys J D, 2007,45(3):485-489. doi: 10.1140/epjd/e2007-00178-5

    38. [38]

      KALITA B, DEKA R C. DFT study of CO adsorption on neutral and charged Pd-n(n=1-7) clusters[J]. Eur Phys J D, 2009,53:51-58. doi: 10.1140/epjd/e2009-00044-6

    39. [39]

      KALITA B, DEKA R C. Reaction intermediates of CO oxidation on gas phase Pd-4 clusters:A density functional study[J]. J Am Chem Soc, 2009,131(37):13252-13254. doi: 10.1021/ja904119b

    40. [40]

      CHEN H, WU Y, QI S, CHEN Y, YANG M. Deoxygenation of octanoic acid catalyzed by hollow spherical Ni/ZrO2[J]. Appl Catal A:Gen, 2017,529:79-90. doi: 10.1016/j.apcata.2016.10.014

    41. [41]

      WANG B, SONG L, ZHANG R. The dehydrogenation of CH4 on Rh(111), Rh(110) and Rh(100) surfaces:A density functional theory study[J]. Appl Surf Sci, 2012,258(8):3714-3722. doi: 10.1016/j.apsusc.2011.12.012

    42. [42]

      ZHANG R, SONG L, WANG Y. Insight into the adsorption and dissociation of CH4 on Pt(h k l) surfaces:A theoretical study[J]. Appl Surf Sci, 2012,258(18):7154-7160. doi: 10.1016/j.apsusc.2012.04.020

    43. [43]

      WANG D, LI Y. Bimetallic nanocrystals:Liquid-phase synthesis and catalytic applications[J]. Adv Mater, 2011,23(9):1044-1060. doi: 10.1002/adma.201003695

  • 加载中
    1. [1]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    8. [8]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    11. [11]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    12. [12]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    13. [13]

      Yanxin JiangKwai Wun ChengZhiping YangJun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231

    14. [14]

      Junhua LiTianci ShenYahui ZhuangYu FuYian Shi . Pd-Catalyzed highly regioselective migratory hydroesterification of internal olefins with formates. Chinese Chemical Letters, 2025, 36(7): 110599-. doi: 10.1016/j.cclet.2024.110599

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    17. [17]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    18. [18]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    19. [19]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    20. [20]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

Metrics
  • PDF Downloads(10)
  • Abstract views(1351)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return