Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion
- Corresponding author: LI Shu-na, lishuna165@126.com LI Zhi-kai, lizhikai@sxicc.ac.cn ZHU Hua-qing, zhhq@sxicc.ac.cn
Citation:
LI Shu-na, SONG Pei, ZHANG Jin-li, HE Xiao-xia, XIE Yi-xin, ZHANG Ya-gang, WANG Rui-yi, LI Zhi-kai, ZHU Hua-qing. Morphological effect of CeO2-MnOx catalyst on their catalytic performance in lean methane combustion[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(5): 615-624.
SU S, BEATH A, GUO H, MALLETT C. An assessment of mine methane mitigation and utilisation technologies[J]. Prog Energy Combust Sci, 2005,31(2):123-170. doi: 10.1016/j.pecs.2004.11.001
DEBBAGH M N, LECEA C S M D, PÉREZ-RAMÍREZ J. Catalytic reduction of N2O over steam-activated FeZSM-5 zeolite:Comparison of CH4, CO, and their mixtures as reductants with or without excess O2[J]. Appl Catal B:Environ, 2007,70(1/4):334-341.
LUO J J, XU H Y, LIU Y F, CHU W, JIANG C F, ZHAO X S. A facile approach for the preparation of biomorphic CuO-ZrO2 catalyst for catalytic combustion of methane[J]. Appl Catal A:Gen, 2012,423/424:121-129. doi: 10.1016/j.apcata.2012.02.025
ZHANG Jia-jin, LI Jian-wei, ZHU Ji-qin, WANG Yue, CHEN Biao-hua. Effect of promoter on the performance of Cu-Mn complex oxide monolithic catalysts for lean methane catalytic combustion[J]. Chin J Catal, 2011,32(8):1380-1386.
SI R, FLYTZANI-STEPHANOPOULOS M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction[J]. Angew Chem Int Ed, 2008,47(15):2884-2887. doi: 10.1002/(ISSN)1521-3773
TANG X F, CHEN J L, LI Y G, LI Y, XU Y D, SHEN W J. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts[J]. Chem Eng J, 2006,118(1/2):119-125.
LI H J, QI G, TA N, ZHANG X J, LI W, SHEN W J. Morphological impact of manganese-cerium oxides on ethanol oxidation[J]. Catal Sci Technol, 2011,1(9):1677-1682. doi: 10.1039/c1cy00308a
WANG X Y, KANG Q, LI D. Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J]. Catal Commun, 2008,9(13):2158-2162. doi: 10.1016/j.catcom.2008.04.021
LI J, ZHU P F, ZHOU R X. Effect of the preparation method on the performance of CuO-MnOx-CeO2 catalysts for selective oxidation of CO in H2-rich streams[J]. J Power Sources, 2011,196(22):9590-9598. doi: 10.1016/j.jpowsour.2011.07.052
ZHANG Y G, QIN Z F, WANG G F, ZHU H Q, DONG M, LI S N, WU Z W, LI Z K, WU Z H, ZHANG J, HU T D, FAN W B, WANG J G. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B:Environ, 2013,129(2):172-181.
LI S N, ZHU H Q, QIN Z F, WANG G F, ZHANG Y G, WU Z W, LI Z K, CHEN G, DONG W W, WU Z H, ZHENG L R, ZHANG J, HU T D, WANG J G. Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B:Environ, 2014,144(2):498-506.
MA C J, WEN Y Y, YUE Q Q, LI A Q, ZHANG N W, GAI H J, ZHENG J B, CHEN B H. Oxygen-vacancy-promoted catalytic wet air oxidation of phenol from MnOx-CeO2[J]. RSC Adv, 2017,7(43):27079-27088. doi: 10.1039/C7RA04037G
ZHANG P F, LU H F, ZHOU Y, ZHANG L, WU Z L, YANG S Z, SHI H L, ZHU Q L, CHEN Y F, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun, 2015,6:8448-8458. doi: 10.1038/ncomms9448
TANG X F, LI Y G, HUANG X M, XU Y D, ZHU H Q, WANG J G, SHEN W J. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcination temperature[J]. Appl Catal B:Environ, 2006,62(3/4):265-273.
CEN W L, LIU Y, WU Z B, WANG H Q, WENG X L. A theoretic insight into the catalytic activity promotion of CeO2 surfaces by Mn doping[J]. Phys Chem Chem Phys, 2012,14(16):5769-5777. doi: 10.1039/c2cp00061j
FRANCISCO M S P, MASTELARO V R, NASCENTE P A P, FLORENTINO A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts[J]. J Phys Chem B, 2001,105(43):10515-10522. doi: 10.1021/jp0109675
LI Shu-na, SHI Qi, LI Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol, 2017,45(6):707-713.
LI Lan, HU Geng-shen, LU Ji-qing, LUO Meng-fei. Review of oxygen vacancies in CeO2-doped solid solutions as characterized by Raman spectroscopy[J]. Acta Phys-Chim Sin, 2012,28(5):1012-1020.
HERNÁNDEZ W Y, CENTENO M A, ROMERO-SARRIA F, ODRIOZOLA J A. Synthesis and characterization of Ce1-xEuxO2-x/2 mixed oxides and their catalytic activities for CO oxidation[J]. J Phys Chem C, 2009,113(14):5629-5635. doi: 10.1021/jp8092989
HUA G M, ZHANG L D, FEI G T, FANG M. Enhanced catalytic activity induced by defects in mesoporous ceria nanotubes[J]. J Mater Chem, 2012,22(14):6851-6855. doi: 10.1039/c2jm13610d
BÊCHE E, CHARVIN P, PERARNAU D, ABANADES S, FLAMANT G. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surf Interface Anal, 2008,40(3/4):264-267.
LI S N, ZHANG Y G, LI X J, YANG X H, LI Z K, WANG R Y, ZHU H Q. Preferential oxidation of CO in H2-rich stream over Au/CeO2-NiO catalysts:Effect of the preparation method[J]. Catal Lett, 2018,148(1):328-340. doi: 10.1007/s10562-017-2231-1
SKORODUMOVA N V, SIMAK S I, LUNDQVIST B I, ABRIKOSOV I A, JOHANSSON B. Quantum origin of the oxygen storage capability of ceria[J]. Phys Rev Lett, 2002,89(16):166601-1166601-4. doi: 10.1103/PhysRevLett.89.166601
YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. J Fuel Chem Technol, 2017,45(2):243-248.
HAMOUDI S, LARACHI F, ADNOT A, SAYARI A. Characterization of spent MnO2/CeO2 wet oxidation catalyst by TPO-MS, XPS, and S-SIMS[J]. J Catal, 1999,185(2):333-334. doi: 10.1006/jcat.1999.2519
DELIMARIS D, IOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B:Environ, 2008,84(1/2):303-312.
ZHAO P, WANG C N, HE F, LIU S T. Effect of ceria morphology on the activity of MnOx/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. RSC Adv, 2014,4(86):45665-45672. doi: 10.1039/C4RA07843H
ŚWIATOWSKA J, LAIR V, PEREIRA-NABAIS C, COTE G, MARCUS P, CHAGNES A. XPS, XRD and SEM characterization of a thin ceria layer deposited onto graphite electrode for application in lithium-ion batteries[J]. Appl Surf Sci, 2011,257(21):9110-9119. doi: 10.1016/j.apsusc.2011.05.108
TROVARELLI A. Catalytic properties of ceria and CeO-containing materials[J]. Catal Rev, 1996,38(4):439-520. doi: 10.1080/01614949608006464
LU H, KONG X, HUANG H, ZHOU Y, CHEN Y. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015,32(6):102-107.
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Juan Yuan , Bin Zhang , Jinping Wu , Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
Simin Wei , Yaqing Yang , Junjie Li , Jialin Wang , Jinlu Tang , Ningning Wang , Zhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Houzhen Xiao , Mingyu Wang , Yong Liu , Bangsheng Lao , Lingbin Lu , Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011
Xingmin Chen , Yunyun Wu , Yao Tang , Peishen Li , Shuai Gao , Qiang Wang , Wen Liu , Sihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Hongwei Ding , Jingjing Yang , Yongchen Shuai , Di Wei , Xueliang Liu , Guiying Li , Lin Jin , Jianliang Shen . In situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286
a: CeO2; b: CeO2-MNOx(SP); c: CeO2-MNOx(OB); d: CeO2-MNOx(NS)
(a), (b): CeO2; (c), (d): CeO2-MNOx(SP); (e), (f): CeO2-MNOx(OB); (g), (h): CeO2-MNOx(NS)
(a): CeO2; (b): CeO2-MNOx(SP); (c): CeO2-MNOx(OB); (d): CeO2-MNOx(NS)
a: CeO2; b: CeO2-MNOx(SP); c: CeO2-MNOx(OB); d: CeO2-MNOx(NS)
a: CeO2; b: CeO2-MNOx(NS); c: CeO2-MNOx(OB); d: CeO2-MNOx(SP)
a: CeO2; b: CeO2-MNOx(SP); c: CeO2-MNOx(OB); d: CeO2-MNOx(NS)
a: CeO2-MNOx(SP); b: CeO2-MNOx(OB); c: CeO2-MNOx(NS)
a: CeO2; b: CeO2-MNOx(NS); c: CeO2-MNOx(OB); d: CeO2-MNOx(SP)
(1.0% CH4, 19.0% O2, balanced Ar and WHSV=30000 mL/(h·g))