Citation: JING Ni-jie, ZHU Hong-mei, LI He-ping. Effect of different ashing temperatures on the sintering characteristics of ash from combustion of coal and biomass blends[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(3): 289-294. shu

Effect of different ashing temperatures on the sintering characteristics of ash from combustion of coal and biomass blends

  • Corresponding author: JING Ni-jie, njjing@hdu.edu.cn
  • Received Date: 12 October 2016
    Revised Date: 16 January 2017

    Fund Project: Zhejiang Provincial Natural Science Foundation of China LQ14E060004sd

Figures(6)

  • Effect of ashing temperature on sintering behavior of ashes from combustion of coal and straw blends was investigated. Blends of a Chinese anthracite, Jincheng coal, and wheat straw were burned at three different temperatures. The resulting ash samples were then subjected to the sintering temperature measurement using a pressure-drop sintering device, morphological and mineralogical characterization with scanning electron microscope (SEM) fitted with X-ray energy dispersive spectroscopy (EDS) and X-ray diffractometry analyzer (XRD), respectively. For the same coal and biomass blends but different ashing temperatures, their sintering temperatures decrease in different extent. In addition, sintering temperatures of the blends under lower ashing temperature are lower than that under the higher ashing temperature. SEM imaging show that the texture of ash samples from lower ashing temperature is irregular, loose and more fibrous. The ashes under higher ashing temperature are mostly in spherical-shape, indicating ash melting has occurred during combustion. The XRD analysis reveals that blends of ash from Jincheng coal and straw under low ashing temperature has low sintering temperature due to more fluxing minerals, like K-containing mineral. The high sintering temperature of the ash blends depends on the Ca-containing minerals like anorthite with high melting temperature.
  • 加载中
    1. [1]

      TANG Jian-ye, CHEN Xue-li, QIAO Zhi, LIU Ai-bin, WANG Fu-chen. Influence of agro-biomass addition on Changping coal ash melting characteristics[J]. CIESC J, 2014,65(12):4948-4957.  

    2. [2]

      HAYKIRI-ACMA H, YAMAN S, KUCUKBAYRAK S. Effect of biomass on temperatures of sintering and initial deformation of lignite ash[J]. Fuel, 2010,89(10):3063-3068. doi: 10.1016/j.fuel.2010.06.003

    3. [3]

      ZHENG Y J, JENSEN P A, JENSEN A D, SANDER B, JUNKER H. Ash transformation during co-firing coal and straw[J]. Fuel, 2007,86(7/8):1008-1020.

    4. [4]

      KAZAGIC A, SMAJEVIC I. The research here presented therefore represents a precondition for the adoption of clean coal technologies[J]. Energy, 2007,32:2006-2016. doi: 10.1016/j.energy.2007.03.007

    5. [5]

      VASSILEV S V, BAXTER D, ANDERSEN L K, VASSILEVAC G. An overview of the chemical composition of biomass[J]. Fuel, 2010,89(5):913-933. doi: 10.1016/j.fuel.2009.10.022

    6. [6]

      LUAN C, YOU C F, ZHANG D K. Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy, 2014,69:562-570. doi: 10.1016/j.energy.2014.03.050

    7. [7]

      LIU H F, XU M H, ZHANG Q, ZHAO H, LI W F. Effective utilization of water hyacinth resource by co-gasification with coal:rheological properties and ash fusion temperatures of hyacinth-coal slurry[J]. Ind Eng Chem Res, 2013,52(46):16436-16443. doi: 10.1021/ie402163c

    8. [8]

      FANG X, JIA L. Experimental study on ash fusion characteristics of biomass[J]. Bioresour Technol, 2012,104:769-774. doi: 10.1016/j.biortech.2011.11.055

    9. [9]

      SAMI M, ANNAMALAI K, WOOLDRIDGE M. Co-firing of coal and biomass fuel blends[J]. Prog Energy Combust Sci, 2001,27:171-214. doi: 10.1016/S0360-1285(00)00020-4

    10. [10]

      DEMIRBAS A. Combustion characteristics of different biomass fuels[J]. Prog Energy Combust Sci, 2004,30(2):219-230. doi: 10.1016/j.pecs.2003.10.004

    11. [11]

      KHAN A A, JONG W, JANSENS P J, SPLIETHOFF H. Biomass combustion in fluidized bed boilers:Potential problems and remedies[J]. Fuel Process Technol, 2009,90(1):21-50. doi: 10.1016/j.fuproc.2008.07.012

    12. [12]

      GAYAN P, ADANEZ J, LUIS F, DIEGO D, GARCI'A-LABIANO F, CABANILLAS A, BAHILLO A, AHO M, VEIJONEN K. Circulating fluidised bed co-combustion of coal and biomass[J]. Fuel, 2004,83(3):277-286. doi: 10.1016/j.fuel.2003.08.003

    13. [13]

      DEMIRBAS A. Sustainable cofiring of biomass with coal[J]. Energy Convers Manage, 2003,44(9):1465-1479. doi: 10.1016/S0196-8904(02)00144-9

    14. [14]

      KUPKA T, MANCINI M, IRMER M, WEBER R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel[J]. Fuel, 2008,87(12):2824-2837. doi: 10.1016/j.fuel.2008.01.024

    15. [15]

      LIN W G, DAM-JOHANSEN K, FRANDSEN F. Agglomeration in bio-fuel fired fluidized bed combustors[J]. Chem Eng J, 2003,96(1/3):171-185.  

    16. [16]

      VAMVUKA D, KAKARAS E. Ash properties and environmental impact of various biomass and coal fuels and their blends[J]. Fuel Process Technol, 2011,92(3):570-581. doi: 10.1016/j.fuproc.2010.11.013

    17. [17]

      TEIXEIRA P, LOPES H, GULYURTLU I, LAPA N, ABELHA P. Evaluation of slagging and fouling tendency during biomass co-firing with coal in a fluidized bed[J]. Biomass Bioenergy, 2012,39:192-203. doi: 10.1016/j.biombioe.2012.01.010

    18. [18]

      GOGEBAKAN Z, GOGEBAKAN G, SELCUK N, SELCUK E. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite[J]. Bioresour Technol, 2009,100(2):1033-1036. doi: 10.1016/j.biortech.2008.07.037

    19. [19]

      JING N J, WANG Q H, LUO Z, CEN K F. Effect of different reaction atmospheres on the sintering temperature of Jincheng coal ash under pressurized conditions[J]. Fuel, 2011,90(8):2645-2651. doi: 10.1016/j.fuel.2011.04.013

    20. [20]

      LI J B, ZHU M M, ZHANG Z Z, ZHANG , K , SH EN, G Q, ZHANG D K. Characterisation of ash deposits on a probe at different temperatures during combustion of a Zhundong lignite in a drop tube furnace[J]. Fuel Process Technol, 2016,144:155-163. doi: 10.1016/j.fuproc.2015.12.024

    21. [21]

      VASSILEV S V, KITANOB K, SHOHEI T, TSURUE T. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Process Technol, 1995,45(1):27-51. doi: 10.1016/0378-3820(95)00032-3

    22. [22]

      YANG J G, DENG F R, ZHAO H, CEN K. Mineral conversion and microstructure change in the melting process of Shenmu coal ash[J]. Asia-Pac J Chem Eng, 2010,2(10):165-170.  

    23. [23]

      WU H W, BRYANT G, WALL T. The effect of pressure on ash formation during pulverized coal combustion[J]. Energy Fuels, 2000,14(4):745-750. doi: 10.1021/ef990080w

    24. [24]

      WU X J, ZHANG Z X, PIAO G L, HE X, CHEN Y S, KOBAYASHI N, MORI S, ITAYA Y. Behavior of mineral matters in Chinese coal ash melting during gasfication reaction char-CO2/H2O[J]. Energy Fuels, 2009,23:2420-2428. doi: 10.1021/ef801002n

    25. [25]

      VUTHALURU H B, ZHANG D K. Effect of Ca-and Mg-bearing minerals on particle agglomeration defluidisation during fluidised-bed combustion of a South Australian lignite[J]. Fuel Process Technol, 2001,69(1):13-27. doi: 10.1016/S0378-3820(00)00129-6

  • 加载中
    1. [1]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    4. [4]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    5. [5]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    6. [6]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    7. [7]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    8. [8]

      Meiyu Lin Yuxin Fang Songzhang Shen Yaqian Duan Wenyi Liang Chi Zhang Juan Su . Exploration and Implementation of a Dual-Pathway Blended Teaching Model in General Chemistry Experiment Course: A Case Study of Copper Glycine Synthesis and Its Thermal Analysis. University Chemistry, 2024, 39(8): 48-53. doi: 10.3866/PKU.DXHX202312042

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    10. [10]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    17. [17]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    18. [18]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    19. [19]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    20. [20]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

Metrics
  • PDF Downloads(6)
  • Abstract views(964)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return